
Gerardo Lopez-Rodas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1613462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alternative Splicing, Epigenetic Modifications and Cancer: A Dangerous Triangle, or a Hopeful One?. Cancers, 2022, 14, 560.	3.7	13
2	Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer. Cancers, 2021, 13, 1433.	3.7	4
3	Potential Biomarkers Associated with Multiple Sclerosis Pathology. International Journal of Molecular Sciences, 2021, 22, 10323.	4.1	14
4	Blockade of the trans-sulfuration pathway in acute pancreatitis due to nitration of cystathionine β-synthase. Redox Biology, 2020, 28, 101324.	9.0	11
5	Pentoxifylline and Oxypurinol: Potential Drugs to Prevent the "Cytokine Release (Storm) Syndrome― Caused by SARS-CoV-2?. Current Pharmaceutical Design, 2020, 26, 4515-4521.	1.9	11
6	ZNF518B gene up-regulation promotes dissemination of tumour cells and is governed by epigenetic mechanisms in colorectal cancer. Scientific Reports, 2019, 9, 9339.	3.3	11
7	Early impairment of epigenetic pattern in neurodegeneration: Additional mechanisms behind pyrethroid toxicity. Experimental Gerontology, 2019, 124, 110629.	2.8	27
8	Role for Chromatin Remodeling Factor Chd1 in Learning and Memory. Frontiers in Molecular Neuroscience, 2019, 12, 3.	2.9	13
9	Determination of histone epigenetic marks in Arabidopsis and tomato genes in the early response to Botrytis cinerea. Plant Cell Reports, 2018, 37, 153-166.	5.6	31
10	Disturbed Glucose Metabolism in Rat Neurons Exposed to Cerebrospinal Fluid Obtained from Multiple Sclerosis Subjects. Brain Sciences, 2018, 8, 1.	2.3	69
11	Role of epigenetic factors in the selection of the alternative splicing isoforms of human <i>KRAS</i> in colorectal cancer cell lines. Oncotarget, 2018, 9, 20578-20589.	1.8	20
12	Histone Post-Translational Modifications and Nucleosome Organisation in Transcriptional Regulation: Some Open Questions. Advances in Experimental Medicine and Biology, 2017, 966, 65-92.	1.6	33
13	Bioenergetic Failure in Rat Oligodendrocyte Progenitor Cells Treated with Cerebrospinal Fluid Derived from Multiple Sclerosis Patients. Frontiers in Cellular Neuroscience, 2017, 11, 209.	3.7	10
14	In silico RNA-seq and experimental analyses reveal the differential expression and splicing of EPDR1 and ZNF518B genes in relation to KRAS mutations in colorectal cancer cells. Oncology Reports, 2016, 36, 3627-3634.	2.6	13
15	Epigenetic Regulation of Early- and Late-Response Genes in Acute Pancreatitis. Journal of Immunology, 2016, 197, 4137-4150.	0.8	28
16	Bypassing hazard of housekeeping genes: their evaluation in rat granule neurons treated with cerebrospinal fluid of multiple sclerosis subjects. Frontiers in Cellular Neuroscience, 2015, 9, 375.	3.7	9
17	EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells. PLoS ONE, 2015, 10, e0130543.	2.5	9
18	Multiple sclerosis patient-derived CSF induces transcriptional changes in proliferating oligodendrocyte progenitors. Multiple Sclerosis Journal, 2015, 21, 1655-1669.	3.0	16

#	Article	IF	CITATIONS
19	Nucleosome-specific, Time-dependent Changes in Histone Modifications during Activation of the Early Growth Response 1 (Egr1) Gene. Journal of Biological Chemistry, 2015, 290, 197-208.	3.4	21
20	Growth Arrest Specific 1 (Gas1) Gene Overexpression in Liver Reduces the In Vivo Progression of Murine Hepatocellular Carcinoma and Partially Restores Gene Expression Levels. PLoS ONE, 2015, 10, e0132477.	2.5	16
21	Perturbed Glucose Metabolism: Insights into Multiple Sclerosis Pathogenesis. Frontiers in Neurology, 2014, 5, 250.	2.4	53
22	In vivo genome-wide binding of Id2 to E2F4 target genes as part of a reversible program in mice liver. Cellular and Molecular Life Sciences, 2014, 71, 3583-3597.	5.4	7
23	Redox signaling and histone acetylation in acute pancreatitis. Free Radical Biology and Medicine, 2012, 52, 819-837.	2.9	67
24	Coordinated Sumoylation and Ubiquitination Modulate EGF Induced EGR1 Expression and Stability. PLoS ONE, 2011, 6, e25676.	2.5	32
25	Changed Histone Acetylation Patterns in Normal-Appearing White Matter and Early Multiple Sclerosis Lesions. Journal of Neuroscience, 2011, 31, 3435-3445.	3.6	130
26	Epigenetic Transcriptional Regulation of the Growth Arrest-Specific gene 1 (Gas1) in Hepatic Cell Proliferation at Mononucleosomal Resolution. PLoS ONE, 2011, 6, e23318.	2.5	14
27	Factor binding and chromatin modification in the promoter of murine Egr1 gene upon induction. Cellular and Molecular Life Sciences, 2010, 67, 4065-4077.	5.4	32
28	Epigenetic Modifiers Are Necessary but Not Sufficient for Reprogramming Non-Myelinating Cells into Myelin Gene-Expressing Cells. PLoS ONE, 2010, 5, e13023.	2.5	27
29	Pentoxifylline Prevents Loss of PP2A Phosphatase Activity and Recruitment of Histone Acetyltransferases to Proinflammatory Genes in Acute Pancreatitis. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 609-617.	2.5	27
30	Cross-Talk between Oxidative Stress and Pro-Inflammatory Cytokines in Acute Pancreatitis: A Key Role for Protein Phosphatases. Current Pharmaceutical Design, 2009, 15, 3027-3042.	1.9	85
31	Transcription of the MAT2A gene, coding for methionine adenosyltransferase, is up-regulated by E2F and Sp1 at a chromatin level during proliferation of liver cells. International Journal of Biochemistry and Cell Biology, 2007, 39, 842-850.	2.8	23
32	Id2 leaves the chromatin of the E2F4–p130-controlled c-myc promoter during hepatocyte priming for liver regeneration. Biochemical Journal, 2006, 398, 431-437.	3.7	37
33	Interaction Between Cytokines and Oxidative Stress in Acute Pancreatitis. Current Medicinal Chemistry, 2006, 13, 2775-2787.	2.4	123
34	A Short-range Gradient of Histone H3 Acetylation and Tup1p Redistribution at the Promoter of the Saccharomyces cerevisiae SUC2 Gene. Journal of Biological Chemistry, 2004, 279, 7678-7684.	3.4	18
35	RNAPol-ChIP: a novel application of chromatin immunoprecipitation to the analysis of real-time gene transcription. Nucleic Acids Research, 2004, 32, e88-e88.	14.5	122
36	Distinct Site Specificity of Two Pea Histone Deacetylase Complexesâ€. Biochemistry, 2001, 40, 10671-10676.	2.5	10

#	Article	IF	CITATIONS
37	DNA methylation and histone acetylation of rat methionine adenosyltransferase 1A and 2A genes is tissue-specific. International Journal of Biochemistry and Cell Biology, 2000, 32, 397-404.	2.8	20
38	Histone deacetylase. FEBS Letters, 1993, 317, 175-180.	2.8	63
39	Enzymes involved in the dynamic equilibrium of core histone acetylation ofPhysarum polycephalum. FEBS Letters, 1992, 296, 82-86.	2.8	33
40	A plant histone acetyltransferase specific for H3 in nucleosomes. Plant Science, 1986, 46, 189-194.	3.6	15