
Luisa V. Lopes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1613287/publications.pdf Version: 2024-02-01

LUISA V LODES

#	Article	IF	CITATIONS
1	Adenosine A2A receptors and brain injury: Broad spectrum of neuroprotection, multifaceted actions and "fine tuning―modulation. Progress in Neurobiology, 2007, 83, 310-331.	5.7	232
2	Extracellular Alpha-Synuclein Oligomers Modulate Synaptic Transmission and Impair LTP Via NMDA-Receptor Activation. Journal of Neuroscience, 2012, 32, 11750-11762.	3.6	228
3	α-synuclein interacts with PrPC to induce cognitive impairment through mGluR5 and NMDAR2B. Nature Neuroscience, 2017, 20, 1569-1579.	14.8	223
4	Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition. Neuroscience, 2002, 112, 319-329.	2.3	201
5	Meningeal γδT cell–derived IL-17 controls synaptic plasticity and short-term memory. Science Immunology, 2019, 4, .	11.9	184
6	Cross Talk Between A ₁ and A _{2A} Adenosine Receptors in the Hippocampus and Cortex of Young Adult and Old Rats. Journal of Neurophysiology, 1999, 82, 3196-3203.	1.8	177
7	Glycation potentiates α-synuclein-associated neurodegeneration in synucleinopathies. Brain, 2017, 140, 1399-1419.	7.6	153
8	A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Molecular Psychiatry, 2016, 21, 97-107.	7.9	145
9	Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors. Molecular Psychiatry, 2020, 25, 1876-1900.	7.9	129
10	Adenosine A2A receptor blockade reverts hippocampal stress-induced deficits and restores corticosterone circadian oscillation. Molecular Psychiatry, 2013, 18, 320-331.	7.9	124
11	Enhancement of LTP in Aged Rats is Dependent on Endogenous BDNF. Neuropsychopharmacology, 2011, 36, 1823-1836.	5.4	117
12	Adenosine A1 and A2A receptors are co-expressed in pyramidal neurons and co-localized in glutamatergic nerve terminals of the rat hippocampus. Neuroscience, 2005, 133, 79-83.	2.3	111
13	Decrease of adenosine A ₁ receptor density and of adenosine neuromodulation in the hippocampus of kindled rats. European Journal of Neuroscience, 2003, 18, 820-828.	2.6	108
14	Increase in the Number, G Protein Coupling, and Efficiency of Facilitatory Adenosine A2A Receptors in the Limbic Cortex, but not Striatum, of Aged Rats. Journal of Neurochemistry, 2002, 73, 1733-1738.	3.9	92
15	IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer's disease. Cell Reports, 2021, 36, 109574.	6.4	88
16	Longâ€ŧerm Effect of Convulsive Behavior on the Density of Adenosine A ₁ and A _{2A} Receptors in the Rat Cerebral Cortex. Epilepsia, 2005, 46, 159-165.	5.1	87
17	Adenosine and Related Drugs in Brain Diseases: Present and Future in Clinical Trials. Current Topics in Medicinal Chemistry, 2011, 11, 1087-1101.	2.1	87
18	Binding of the prototypical adenosine A2A receptor agonist CGS 21680 to the cerebral cortex of adenosine A1 and A2A receptor knockout mice. British Journal of Pharmacology, 2004, 141, 1006-1014.	5.4	85

LUISA V. LOPES

#	Article	IF	CITATIONS
19	Maternal separation impairs long term-potentiation in CA1-CA3 synapses and hippocampal-dependent memory in old rats. Neurobiology of Aging, 2014, 35, 1680-1685.	3.1	79
20	Overexpression of Adenosine A2A Receptors in Rats: Effects on Depression, Locomotion, and Anxiety. Frontiers in Psychiatry, 2014, 5, 67.	2.6	76
21	Beneficial Effect of a Selective Adenosine A2A Receptor Antagonist in the APPswe/PS1dE9 Mouse Model of Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2018, 11, 235.	2.9	72
22	Adenosine A3 receptors are located in neurons of the rat hippocampus. NeuroReport, 2003, 14, 1645-1648.	1.2	71
23	Exacerbation of C1q dysregulation, synaptic loss and memory deficits in tau pathology linked to neuronal adenosine A2A receptor. Brain, 2019, 142, 3636-3654.	7.6	71
24	Modulating Alzheimer's Disease Through Caffeine: A Putative Link to Epigenetics. Journal of Alzheimer's Disease, 2011, 24, 161-171.	2.6	70
25	Adenosine A _{2A} Receptors Modulate α-Synuclein Aggregation and Toxicity. Cerebral Cortex, 2017, 27, bhv268.	2.9	66
26	The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Scientific Reports, 2016, 6, 31493.	3.3	55
27	Modification of adenosine modulation of acetylcholine release in the hippocampus of aged rats. Neurobiology of Aging, 2008, 29, 1597-1601.	3.1	54
28	Inhibition of NMDA Receptors Prevents the Loss of BDNF Function Induced by Amyloid β. Frontiers in Pharmacology, 2018, 9, 237.	3.5	54
29	Prolactin-induced neuroprotection against glutamate excitotoxicity is mediated by the reduction of [Ca2+]i overload and NF-lºB activation. PLoS ONE, 2017, 12, e0176910.	2.5	48
30	From epidemiology to pathophysiology: what about caffeine in Alzheimer's disease?. Biochemical Society Transactions, 2014, 42, 587-592.	3.4	45
31	Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation. Neuropharmacology, 2017, 117, 316-327.	4.1	37
32	Novel Players in the Aging Synapse: Impact on Cognition. Journal of Caffeine and Adenosine Research, 2019, 9, 104-127.	0.6	36
33	Escitalopram improves memory deficits induced by maternal separation in the rat. European Journal of Pharmacology, 2012, 695, 71-75.	3.5	32
34	Impact of inÂvivo chronic blockade of adenosine A2A receptors on the BDNF-mediated facilitation of LTP. Neuropharmacology, 2014, 83, 99-106.	4.1	31
35	Proteomics of the rat gut: Analysis of the myenteric plexus-longitudinal muscle preparation. Proteomics, 2005, 5, 2561-2569.	2.2	28
36	Glycation potentiates neurodegeneration in models of Huntington's disease. Scientific Reports, 2016, 6, 36798.	3.3	27

Luisa V. Lopes

#	Article	IF	CITATIONS
37	Adenosine Receptors as Neuroinflammation Modulators: Role of A1 Agonists and A2A Antagonists. Cells, 2020, 9, 1739.	4.1	27
38	Neuroprotection afforded by adenosine A _{2A} receptor blockade is modulated by corticotrophinâ€releasing factor (<scp>CRF</scp>) in glutamate injured cortical neurons. Journal of Neurochemistry, 2012, 123, 1030-1040.	3.9	26
39	Binding of adenosine receptor ligands to brain of adenosine receptor knock-out mice: evidence that CGS 21680 binds to A1 receptors in hippocampus. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 370, 270-278.	3.0	25
40	The Amyloid Precursor Protein C-Terminal Domain Alters CA1 Neuron Firing, Modifying Hippocampus Oscillations and Impairing Spatial Memory Encoding. Cell Reports, 2019, 29, 317-331.e5.	6.4	24
41	Caffeine intake exerts dual genome-wide effects on hippocampal metabolism and learning-dependent transcription. Journal of Clinical Investigation, 2022, 132, .	8.2	22
42	Maternal deprivation affects the neuromuscular protein profile of the rat colon in response to an acute stressor later in life. Journal of Proteomics, 2008, 71, 80-88.	2.4	20
43	Mutant A53T α-Synuclein Improves Rotarod Performance Before Motor Deficits and Affects Metabolic Pathways. NeuroMolecular Medicine, 2017, 19, 113-121.	3.4	20
44	Sensing α‧ynuclein From the Outside via the Prion Protein: Implications for Neurodegeneration. Movement Disorders, 2018, 33, 1675-1684.	3.9	19
45	Effects of Carbamazepine and Novel 10,11-Dihydro-5H -Dibenz[b,f]Azepine-5-Carboxamide Derivatives on Synaptic Transmission in Rat Hippocampal Slices. Basic and Clinical Pharmacology and Toxicology, 2002, 90, 208-213.	0.0	17
46	Glycation modulates glutamatergic signaling and exacerbates Parkinson's disease-like phenotypes. Npj Parkinson's Disease, 2022, 8, 51.	5.3	15
47	Adenosine A3 receptors in the rat hippocampus: Lack of interaction with A1 receptors. Drug Development Research, 2003, 58, 428-438.	2.9	14
48	Validation of the Portuguese Variant of the Munich Chronotype Questionnaire (MCTQPT). Frontiers in Physiology, 2020, 11, 795.	2.8	12
49	Adenosine receptor interactions in the hippocampus. Drug Development Research, 2001, 52, 337-345.	2.9	10
50	Design, synthesis and evaluation of 2-aryl benzoxazoles as promising hit for the A _{2A} receptor. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 850-864.	5.2	10
51	Modeling human age-associated increase in Gadd45γ expression leads to spatial recognition memory impairments in young adult mice. Neurobiology of Aging, 2020, 94, 281-286.	3.1	9
52	Multicompartment Microreactors Prevent Excitotoxic Dysfunctions In Rat Primary Cortical Neurons. Advanced Biology, 2020, 4, e2000139.	3.0	6
53	Stabilizing synapses. Science, 2021, 374, 684-685.	12.6	4
54	S327 phosphorylation of the presynaptic protein SEPTIN5 increases in the early stages of neurofibrillary pathology and alters the functionality of SEPTIN5. Neurobiology of Disease, 2022, 163, 105603.	4.4	4

Luisa V. Lopes

#	Article	IF	CITATIONS
55	Proteomics at the interface of psychology, gut physiology and dysfunction: an underexploited approach that deserves expansion. Expert Review of Proteomics, 2011, 8, 605-614.	3.0	3
56	Design and synthesis of fused tetrahydroisoquinoline-iminoimidazolines. European Journal of Medicinal Chemistry, 2015, 106, 15-25.	5.5	3
57	Adenosine Receptors and Alzheimer's Disease. , 2013, , 385-407.		2
58	Tapentadol Prevents Motor Impairments in a Mouse Model of Dyskinesia. Neuroscience, 2020, 424, 58-71.	2.3	2
59	Adenosine Receptors in Huntington's Disease. , 2013, , 409-434.		1
60	Transection of the Superior Sagittal Sinus Enables Bilateral Access to the Rodent Midline Brain Structures. ENeuro, 2021, 8, ENEURO.0146-21.2021.	1.9	1
61	Molecular Aspects of Hippocampal Aging. , 2020, , 43-63.		Ο