
Alerie G De La Fuente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1612897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inflammation in multiple sclerosis induces a specific reactive astrocyte state driving non ellâ€autonomous neuronal damage. Clinical and Translational Medicine, 2022, 12, e837.	4.0	4
2	Autoantibodies and microglia: boon or bane?. Brain, 2021, 144, 2231-2233.	7.6	0
3	Systematic approach to selecting licensed drugs for repurposing in the treatment of progressive multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 295-302.	1.9	15
4	Polyornithine-based polyplexes to boost effective gene silencing in CNS disorders. Nanoscale, 2020, 12, 6285-6299.	5.6	10
5	Microglia Require CD4ÂT Cells to Complete the Fetal-to-Adult Transition. Cell, 2020, 182, 625-640.e24.	28.9	191
6	Dynamic CCN3 expression in the murine CNS does not confer essential roles in myelination or remyelination. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18018-18028.	7.1	15
7	Aging and Neurodegenerative Disease: Is the Adaptive Immune System a Friend or Foe?. Frontiers in Aging Neuroscience, 2020, 12, 572090.	3.4	78
8	Changes in the Oligodendrocyte Progenitor Cell Proteome with Ageing. Molecular and Cellular Proteomics, 2020, 19, 1281-1302.	3.8	53
9	The fatty acid binding protein FABP7 is required for optimal oligodendrocyte differentiation during myelination but not during remyelination. Glia, 2020, 68, 1410-1420.	4.9	20
10	Protective and Regenerative Roles of T Cells in Central Nervous System Disorders. Frontiers in Immunology, 2019, 10, 2171.	4.8	48
11	Aging restricts the ability of mesenchymal stem cells to promote the generation of oligodendrocytes during remyelination. Clia, 2019, 67, 1510-1525.	4.9	28
12	Pericytes Favor Oligodendrocyte Fate Choice in Adult Neural Stem Cells. Frontiers in Cellular Neuroscience, 2019, 13, 85.	3.7	19
13	The microbiota regulates murine inflammatory responses to toxin-induced CNS demyelination but has minimal impact on remyelination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25311-25321.	7.1	29
14	Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination. Cell Reports, 2017, 20, 1755-1764.	6.4	100
15	Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. Journal of Cell Biology, 2015, 211, 975-985.	5.2	118
16	Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination. Brain, 2015, 138, 3581-3597.	7.6	159
17	Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. Journal of Experimental Medicine, 2015, 212, 212130IA113.	8.5	0
18	Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer's disease. Journal of Clinical Investigation, 2013, 123, 2523-2538.	8.2	96

#	Article	IF	CITATIONS
19	Masking of Transmembrane-Based Retention Signals Controls ER Export of Î ³ -Secretase. Traffic, 2010, 11, 250-258.	2.7	20