Martin Pelletier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/16120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impacts of endocrine-disrupting chemicals on prostate function and cancer. Environmental Research, 2022, 204, 112085.	7.5	20
2	Bisphenol A, bisphenol S and their glucuronidated metabolites modulate glycolysis and functional responses of human neutrophils. Environmental Research, 2021, 196, 110336.	7.5	22
3	Endocrine-disrupting effects of bisphenols on urological cancers. Environmental Research, 2021, 195, 110485.	7.5	18
4	KLF5 and NFYA factors as novel regulators of prostate cancer cell metabolism. Endocrine-Related Cancer, 2021, 28, 257-271.	3.1	15
5	Expression of the myeloid inhibitory receptor CLEC12A correlates with disease activity and cytokines in early rheumatoid arthritis. Scientific Reports, 2021, 11, 11248.	3.3	8
6	Arf6 regulates energy metabolism in neutrophils. Free Radical Biology and Medicine, 2021, 172, 550-561.	2.9	10
7	A FACS-Free Purification Method to Study Estrogen Signaling, Organoid Formation, and Metabolic Reprogramming in Mammary Epithelial Cells. Frontiers in Endocrinology, 2021, 12, 672466.	3.5	10
8	Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. Lancet Respiratory Medicine,the, 2021, 9, 924-932.	10.7	218
9	Bisphenol A Alters the Energy Metabolism of Stromal Cells and Could Promote Bladder Cancer Progression. Cancers, 2021, 13, 5461.	3.7	10
10	Heat-Inactivation of Fetal and Newborn Sera Did Not Impair the Expansion and Scaffold Engineering Potentials of Fibroblasts. Bioengineering, 2021, 8, 184.	3.5	5
11	P98â€Neutrophils in lupus: a new phenotype. , 2020, , .		0
12	The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. Journal of Immunotoxicology, 2020, 17, 163-174.	1.7	137
13	Merocytic Dendritic Cells Compose a Conventional Dendritic Cell Subset with Low Metabolic Activity. Journal of Immunology, 2020, 205, 121-132.	0.8	11
14	The evaluation of cytokines to help establish diagnosis and guide treatment of autoinflammatory and autoimmune diseases. Journal of Leukocyte Biology, 2020, 108, 647-657.	3.3	17
15	Enhanced myelopoiesis and aggravated arthritis in S100a8-deficient mice. PLoS ONE, 2019, 14, e0221528.	2.5	7
16	The use of leukocytes' secretome to individually target biological therapy in autoimmune arthritis: a case report. Clinical and Translational Medicine, 2019, 8, 19.	4.0	5
17	Anti-mitochondrial autoantibodies in systemic lupus erythematosus and their association with disease manifestations. Scientific Reports, 2019, 9, 4530.	3.3	43
18	Tumor-Associated Macrophages Enhance Tumor Hypoxia and Aerobic Glycolysis. Cancer Research, 2019, 79, 795-806.	0.9	188

MARTIN PELLETIER

#	Article	IF	CITATIONS
19	Quinoline-3-carboxamides such as tasquinimod are not specific inhibitors of S100A9. Blood Advances, 2018, 2, 1170-1171.	5.2	7
20	S100A9 induces differentiation of acute myeloid leukemia cells through TLR4. Blood, 2017, 129, 1980-1990.	1.4	104
21	S100A9 potentiates the activation of neutrophils by the etiological agent of gout, monosodium urate crystals. Journal of Leukocyte Biology, 2017, 102, 805-813.	3.3	15
22	ICAM1+ neutrophils promote chronic inflammation via ASPRV1 in B cell–dependent autoimmune encephalomyelitis. JCI Insight, 2017, 2, .	5.0	48
23	Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection. Journal of Experimental Medicine, 2016, 213, 1409-1418.	8.5	137
24	Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-κB activation and autoinflammatory disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1612-1617.	7.1	65
25	The TNF-Family Ligand TL1A and Its Receptor DR3 Promote T Cell–Mediated Allergic Immunopathology by Enhancing Differentiation and Pathogenicity of IL-9–Producing T Cells. Journal of Immunology, 2015, 194, 3567-3582.	0.8	96
26	Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. Journal of Clinical Investigation, 2015, 125, 4196-4211.	8.2	258
27	Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects. Journal of Clinical Investigation, 2015, 125, 4592-4600.	8.2	135
28	The TNF-family cytokine TL1A promotes allergic immunopathology through group 2 innate lymphoid cells. Mucosal Immunology, 2014, 7, 958-968.	6.0	132
29	Extracellular Flux Analysis to Monitor Glycolytic Rates and Mitochondrial Oxygen Consumption. Methods in Enzymology, 2014, 542, 125-149.	1.0	67
30	New tricks from an old dog: Mitochondrial redox signaling in cellular inflammation. Seminars in Immunology, 2012, 24, 384-392.	5.6	53
31	Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). Journal of Experimental Medicine, 2011, 208, 519-533.	8.5	749
32	Human neutrophils interact with both 6-sulfo LacNAc+ DC and NK cells to amplify NK-derived IFNγ: role of CD18, ICAM-1, and ICAM-3. Blood, 2011, 117, 1677-1686.	1.4	92
33	Toll-Like Receptor-3-Activated Human Mesenchymal Stromal Cells Significantly Prolong the Survival and Function of Neutrophils. Stem Cells, 2011, 29, 1001-1011.	3.2	185
34	Evidence for a cross-talk between human neutrophils and Th17 cells. Blood, 2010, 115, 335-343.	1.4	655
35	Modulation of human neutrophil survival and antigen expression by activated CD4+ and CD8+ T cells. Journal of Leukocyte Biology, 2010, 88, 1163-1170.	3.3	44
36	Wishing Away Inflammation? New Links between Serotonin and TNF Signaling. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2009, 9, 299-301.	3.4	21

MARTIN PELLETIER

#	Article	IF	CITATIONS
37	Molecular mechanisms involved in interleukin-4-induced human neutrophils: expression and regulation of suppressor of cytokine signaling. Journal of Leukocyte Biology, 2007, 81, 1287-1296.	3.3	46
38	Angiopoietin chemotactic activities on neutrophils are regulated by PI-3K activation. Journal of Leukocyte Biology, 2007, 81, 1093-1101.	3.3	51
39	Biological Functions of Interleukin-21 and Its Role in Inflammation. Scientific World Journal, The, 2007, 7, 1715-1735.	2.1	21
40	Differential Effects of IL-15 and IL-21 in Myeloid (CD11b+) and Lymphoid (CD11bâ^') Bone Marrow Cells. Journal of Immunology, 2006, 177, 100-108.	0.8	19
41	Interleukin-15 increases neutrophil adhesion onto human respiratory epithelial A549 cells and attracts neutrophils in vivo. Clinical and Experimental Immunology, 2005, 141, 315-325.	2.6	28
42	In Vivo and In Vitro Roles of IL-21 in Inflammation. Journal of Immunology, 2004, 173, 7521-7530.	0.8	106
43	Mechanisms Involved in Spontaneous and <i>Viscum album</i> Agglutinin-I-Induced Human Neutrophil Apoptosis: <i>Viscum album</i> Agglutinin-I Accelerates the Loss of Antiapoptotic Mcl-1 Expression and the Degradation of Cytoskeletal Paxillin and Vimentin Proteins Via Caspases. Journal of Immunology. 2002. 168. 1419-1427.	0.8	75
44	Dieldrin induces human neutrophil superoxide production via protein kinases C and tyrosine kinases. Human and Experimental Toxicology, 2002, 21, 415-420.	2.2	8
45	Activation of Human Epithelial Lung A549 Cells by the Pollutant Sodium Sulfite: Enhancement of Neutrophil Adhesion. Toxicological Sciences, 2002, 69, 210-216.	3.1	30
46	Toxaphene, but Not Beryllium, Induces Human Neutrophil Chemotaxis and Apoptosis via Reactive Oxygen Species (ROS): Involvement of Caspases and ROS in the Degradation of Cytoskeletal Proteins. Clinical Immunology, 2002, 104, 40-48.	3.2	24
47	Activation of Human Neutrophils by the Pollutant Sodium Sulfite: Effect on Cytokine Production, Chemotaxis, and Cell Surface Expression of Cell Adhesion Molecules. Clinical Immunology, 2002, 105, 169-175.	3.2	37
48	Mechanisms involved in interleukin-15-induced suppression of human neutrophil apoptosis: role of the anti-apoptotic Mcl-1 protein and several kinases including Janus kinase-2, p38 mitogen-activated protein kinase and extracellular signal-regulated kinases. FEBS Letters, 2002, 532, 164-170.	2.8	74
49	Modulation of Interleukin-15-Induced Human Neutrophil Responses by the Plant Lectin Viscum album Agglutinin-I. Clinical Immunology, 2001, 101, 229-236.	3.2	19
50	Activation of Human Neutrophils by Technical Toxaphene. Clinical Immunology, 2001, 98, 46-53.	3.2	27
51	Activation of Human Neutrophils by the Air Pollutant Sodium Sulfite (Na2SO3): Comparison with Immature Promyelocytic HL-60 and DMSO-Differentiated HL-60 Cells Reveals That Na2SO3 Is a Neutrophil but Not a HL-60 Cell Agonist. Clinical Immunology, 2000, 96, 131-139.	3.2	29
52	Functional responses of human neutrophils to sodium sulfite (Na2SO3) in vitro. Human and Experimental Toxicology, 1998, 17, 600-605.	2.2	37