## **Timothy Frayling**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1610842/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science, 2007, 316, 889-894.                                 | 6.0  | 3,884     |
| 2  | Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.                                                                           | 13.7 | 3,823     |
| 3  | Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature<br>Genetics, 2010, 42, 937-948.                                           | 9.4  | 2,634     |
| 4  | A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 2016, 48, 1279-1283.                                                                            | 9.4  | 2,421     |
| 5  | Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature, 2011, 478, 103-109.                                                         | 13.7 | 1,855     |
| 6  | Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.                                    | 9.4  | 1,818     |
| 7  | Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature, 2010, 467, 832-838.                                                          | 13.7 | 1,789     |
| 8  | Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genetics, 2012, 44, 981-990.                     | 9.4  | 1,748     |
| 9  | Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nature<br>Genetics, 2010, 42, 579-589.                                           | 9.4  | 1,631     |
| 10 | Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nature Genetics, 2009, 41, 25-34.                                         | 9.4  | 1,572     |
| 11 | Systematic identification of trans eQTLs as putative drivers of known disease associations. Nature<br>Genetics, 2013, 45, 1238-1243.                                             | 9.4  | 1,544     |
| 12 | Meta-analysis of genome-wide association studies for height and body mass index in â^1⁄4700000 individuals of European ancestry. Human Molecular Genetics, 2018, 27, 3641-3649.  | 1.4  | 1,541     |
| 13 | Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature Genetics, 2012, 44, 369-375.            | 9.4  | 1,338     |
| 14 | Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics, 2018, 50, 1505-1513.            | 9.4  | 1,331     |
| 15 | New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.                                                                          | 13.7 | 1,328     |
| 16 | Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics, 2014, 46, 234-244.                   | 9.4  | 959       |
| 17 | The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.                                                                                                           | 13.7 | 952       |
| 18 | Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nature Genetics, 2010, 42, 949-960. | 9.4  | 836       |

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nature Genetics, 2012, 44, 659-669. | 9.4  | 762       |
| 20 | Meta-analysis of genome-wide association studies for body fat distribution in 694Â649 individuals of<br>European ancestry. Human Molecular Genetics, 2019, 28, 166-174.           | 1.4  | 752       |
| 21 | Biological interpretation of genome-wide association studies using predicted gene functions. Nature<br>Communications, 2015, 6, 5890.                                             | 5.8  | 706       |
| 22 | An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes, 2017, 66, 2888-2902.                                                                         | 0.3  | 615       |
| 23 | Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nature Genetics, 2021, 53, 1300-1310.       | 9.4  | 590       |
| 24 | Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nature Genetics, 2013, 45, 501-512.                   | 9.4  | 578       |
| 25 | Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.                                                                                      | 13.7 | 544       |
| 26 | Genome–wide association studies provide new insights into type 2 diabetes aetiology. Nature Reviews<br>Genetics, 2007, 8, 657-662.                                                | 7.7  | 528       |
| 27 | Exome-wide association study of plasma lipids in >300,000 individuals. Nature Genetics, 2017, 49,<br>1758-1766.                                                                   | 9.4  | 470       |
| 28 | Genomic inflation factors under polygenic inheritance. European Journal of Human Genetics, 2011, 19,<br>807-812.                                                                  | 1.4  | 460       |
| 29 | Genome-Wide Association Scan Meta-Analysis Identifies Three Loci Influencing Adiposity and Fat<br>Distribution. PLoS Genetics, 2009, 5, e1000508.                                 | 1.5  | 453       |
| 30 | Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nature Genetics, 2017, 49, 17-26.            | 9.4  | 452       |
| 31 | The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and<br>Anthropometric Traits. PLoS Genetics, 2012, 8, e1002793.                       | 1.5  | 448       |
| 32 | Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nature Communications, 2019, 10, 343.                             | 5.8  | 417       |
| 33 | Genome-wide associations for birth weight and correlations with adult disease. Nature, 2016, 538, 248-252.                                                                        | 13.7 | 406       |
| 34 | Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nature Genetics, 2019, 51, 804-814.                                      | 9.4  | 402       |
| 35 | Using human genetics to understand the disease impacts of testosterone in men and women. Nature<br>Medicine, 2020, 26, 252-258.                                                   | 15.2 | 384       |
| 36 | FTO genotype is associated with phenotypic variability of body mass index. Nature, 2012, 490, 267-272.                                                                            | 13.7 | 383       |

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits. PLoS Genetics, 2013, 9, e1003500.                           | 1.5  | 371       |
| 38 | Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nature Communications, 2019, 10, 1100.                       | 5.8  | 369       |
| 39 | Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.                                                        | 9.4  | 365       |
| 40 | Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics, 2018, 50, 559-571.                                                       | 9.4  | 356       |
| 41 | The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.                                                                                                   | 13.7 | 353       |
| 42 | The trans-ancestral genomic architecture of glycemic traits. Nature Genetics, 2021, 53, 840-860.                                                                                                           | 9.4  | 341       |
| 43 | Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels<br>and Provides New Insights Into the Pathophysiology of Type 2 Diabetes. Diabetes, 2011, 60, 2624-2634. | 0.3  | 335       |
| 44 | Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study. Lancet Diabetes and Endocrinology,the, 2014, 2, 719-729.                              | 5.5  | 319       |
| 45 | Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep<br>Duration Loci. PLoS Genetics, 2016, 12, e1006125.                                                          | 1.5  | 308       |
| 46 | New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nature Genetics, 2013, 45, 76-82.                                                | 9.4  | 293       |
| 47 | Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nature Genetics, 2018, 50, 26-41.                                      | 9.4  | 286       |
| 48 | Biological and clinical insights from genetics of insomnia symptoms. Nature Genetics, 2019, 51, 387-393.                                                                                                   | 9.4  | 250       |
| 49 | Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics, 2022, 54, 560-572.                                             | 9.4  | 250       |
| 50 | Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank. BMJ,<br>The, 2016, 352, i582.                                                                              | 3.0  | 247       |
| 51 | Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell, 2011, 10, 868-878.                                                                | 3.0  | 230       |
| 52 | Population genetic differentiation of height and body mass index across Europe. Nature Genetics, 2015, 47, 1357-1362.                                                                                      | 9.4  | 227       |
| 53 | Genetic Evidence for Causal Relationships Between Maternal Obesity-Related Traits and Birth Weight.<br>JAMA - Journal of the American Medical Association, 2016, 315, 1129.                                | 3.8  | 220       |
| 54 | Genetic studies of accelerometer-based sleep measures yield new insights into human sleep behaviour.<br>Nature Communications, 2019, 10, 1585.                                                             | 5.8  | 189       |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Genetic Evidence for a Normal-Weight "Metabolically Obese―Phenotype Linking Insulin Resistance,<br>Hypertension, Coronary Artery Disease, and Type 2 Diabetes. Diabetes, 2014, 63, 4369-4377.                                         | 0.3  | 185       |
| 56 | Genetic insights into biological mechanisms governing human ovarian ageing. Nature, 2021, 596, 393-397.                                                                                                                               | 13.7 | 183       |
| 57 | Genetic correlates of social stratification in Great Britain. Nature Human Behaviour, 2019, 3, 1332-1342.                                                                                                                             | 6.2  | 177       |
| 58 | Genetic evidence that raised sex hormone binding globulin (SHBC) levels reduce the risk of type 2<br>diabetes. Human Molecular Genetics, 2010, 19, 535-544.                                                                           | 1.4  | 176       |
| 59 | Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nature Communications, 2015, 6, 5897.                                                                                   | 5.8  | 173       |
| 60 | Directional dominance on stature and cognition inÂdiverse human populations. Nature, 2015, 523,<br>459-462.                                                                                                                           | 13.7 | 173       |
| 61 | Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nature Communications, 2017, 8, 14977.                                                                         | 5.8  | 169       |
| 62 | A Central Role for GRB10 in Regulation of Islet Function in Man. PLoS Genetics, 2014, 10, e1004235.                                                                                                                                   | 1.5  | 164       |
| 63 | Gene–obesogenic environment interactions in the UK Biobank study. International Journal of<br>Epidemiology, 2017, 46, dyw337.                                                                                                         | 0.9  | 159       |
| 64 | Assessing the Pathogenicity, Penetrance, and Expressivity of Putative Disease-Causing Variants in a<br>Population Setting. American Journal of Human Genetics, 2019, 104, 275-286.                                                    | 2.6  | 158       |
| 65 | Genome-wide physical activity interactions in adiposity ― A meta-analysis of 200,452 adults. PLoS<br>Genetics, 2017, 13, e1006528.                                                                                                    | 1.5  | 158       |
| 66 | Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and<br>highlights maternal genetic effects that are independent of fetal genetics. Human Molecular Genetics,<br>2018, 27, 742-756. | 1.4  | 156       |
| 67 | Using genetics to understand the causal influence of higher BMI on depression. International Journal of Epidemiology, 2019, 48, 834-848.                                                                                              | 0.9  | 156       |
| 68 | Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels. Nature<br>Communications, 2016, 7, 10494.                                                                                                        | 5.8  | 153       |
| 69 | Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease. PLoS Genetics, 2014, 10, e1004123.                                                                                   | 1.5  | 150       |
| 70 | Evidence of a causal relationship between body mass index and psoriasis: A mendelian randomization study. PLoS Medicine, 2019, 16, e1002739.                                                                                          | 3.9  | 144       |
| 71 | A Putative Functional Polymorphism in the IGF-I Gene: Association Studies With Type 2 Diabetes, Adult<br>Height, Glucose Tolerance, and Fetal Growth in U.K. Populations. Diabetes, 2002, 51, 2313-2316.                              | 0.3  | 129       |
| 72 | Genetic Evidence for a Link Between Favorable Adiposity and Lower Risk of Type 2 Diabetes,<br>Hypertension, and Heart Disease. Diabetes, 2016, 65, 2448-2460.                                                                         | 0.3  | 122       |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity.<br>Nature Genetics, 2015, 47, 921-925.                                                     | 9.4  | 120       |
| 74 | Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nature Communications, 2019, 10, 3503.                                | 5.8  | 117       |
| 75 | Another explanation for apparent epistasis. Nature, 2014, 514, E3-E5.                                                                                                                           | 13.7 | 116       |
| 76 | Using Genetic Variants to Assess the Relationship Between Circulating Lipids and Type 2 Diabetes.<br>Diabetes, 2015, 64, 2676-2684.                                                             | 0.3  | 114       |
| 77 | Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants.<br>Aging, 2016, 8, 547-560.                                                               | 1.4  | 113       |
| 78 | A novel common variant in DCST2 is associated with length in early life and height in adulthood.<br>Human Molecular Genetics, 2015, 24, 1155-1168.                                              | 1.4  | 109       |
| 79 | Phantasia–The psychological significance of lifelong visual imagery vividness extremes. Cortex, 2020,<br>130, 426-440.                                                                          | 1.1  | 106       |
| 80 | Genetic predictors of participation in optional components of UK Biobank. Nature Communications, 2021, 12, 886.                                                                                 | 5.8  | 106       |
| 81 | New gene variants alter type 2 diabetes risk predominantly through reduced beta-cell function.<br>Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11, 371-377.                  | 1.3  | 102       |
| 82 | A Genome-Wide Association Study of IVGTT-Based Measures of First-Phase Insulin Secretion Refines the<br>Underlying Physiology of Type 2 Diabetes Variants. Diabetes, 2017, 66, 2296-2309.       | 0.3  | 102       |
| 83 | A genomic approach to therapeutic target validation identifies a glucose-lowering <i>GLP1R</i> variant protective for coronary heart disease. Science Translational Medicine, 2016, 8, 341ra76. | 5.8  | 100       |
| 84 | Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nature Genetics, 2019, 51, 452-469.                                           | 9.4  | 89        |
| 85 | Mosaic Turner syndrome shows reduced penetrance in an adult population study. Genetics in<br>Medicine, 2019, 21, 877-886.                                                                       | 1.1  | 88        |
| 86 | Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nature Communications, 2021, 12, 24.                                                                  | 5.8  | 87        |
| 87 | GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI. Science Advances, 2019, 5, eaaw3095.                                             | 4.7  | 86        |
| 88 | Novel Approach Identifies SNPs in SLC2A10 and KCNK9 with Evidence for Parent-of-Origin Effect on<br>Body Mass Index. PLoS Genetics, 2014, 10, e1004508.                                         | 1.5  | 80        |
| 89 | Investigating causal relations between sleep traits and risk of breast cancer in women: mendelian randomisation study. BMJ: British Medical Journal, 2019, 365, I2327.                          | 2.4  | 79        |
| 90 | A Common Allele in FGF21 Associated with Sugar Intake Is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure. Cell Reports, 2018, 23, 327-336.               | 2.9  | 76        |

| #   | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape. Nature Communications, 2016, 7, 13357.                                                                                                                 | 5.8 | 74        |
| 92  | Genome-Wide and Abdominal MRI Data Provide Evidence That a Genetically Determined Favorable<br>Adiposity Phenotype Is Characterized by Lower Ectopic Liver Fat and Lower Risk of Type 2 Diabetes,<br>Heart Disease, and Hypertension. Diabetes, 2019, 68, 207-219. | 0.3 | 72        |
| 93  | Prosaposin is a regulator of progranulin levels and oligomerization. Nature Communications, 2016, 7, 11992.                                                                                                                                                        | 5.8 | 68        |
| 94  | Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies <i>BCL2</i> and <i>FAM19A2</i> as Novel Insulin Sensitivity Loci. Diabetes, 2016, 65, 3200-3211.                                                                       | 0.3 | 67        |
| 95  | Parental diabetes and birthweight in 236 030 individuals in the UK Biobank Study. International Journal of Epidemiology, 2013, 42, 1714-1723.                                                                                                                      | 0.9 | 65        |
| 96  | Variants in the FTO and CDKAL1 loci have recessive effects on risk of obesity and type 2 diabetes, respectively. Diabetologia, 2016, 59, 1214-1221.                                                                                                                | 2.9 | 65        |
| 97  | CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits. Nature Communications, 2017, 8, 744.                                                                                                              | 5.8 | 64        |
| 98  | A Genome-Wide Scan in Families With Maturity-Onset Diabetes of the Young: Evidence for Further<br>Genetic Heterogeneity. Diabetes, 2003, 52, 872-881.                                                                                                              | 0.3 | 62        |
| 99  | Allelic heterogeneity and more detailed analyses of known loci explain additional phenotypic<br>variation and reveal complex patterns of association. Human Molecular Genetics, 2011, 20, 4082-4092.                                                               | 1.4 | 61        |
| 100 | Differentially expressed genes reflect disease-induced rather than disease-causing changes in the transcriptome. Nature Communications, 2021, 12, 5647.                                                                                                            | 5.8 | 61        |
| 101 | An Interleukin-18 Polymorphism Is Associated With Reduced Serum Concentrations and Better Physical<br>Functioning in Older People. Journals of Gerontology - Series A Biological Sciences and Medical<br>Sciences, 2007, 62, 73-78.                                | 1.7 | 55        |
| 102 | Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference.<br>Nature Communications, 2018, 9, 711.                                                                                                                      | 5.8 | 54        |
| 103 | Genetic evidence that lower circulating FSH levels lengthen menstrual cycle, increase age at menopause and impact female reproductive health. Human Reproduction, 2016, 31, 473-481.                                                                               | 0.4 | 51        |
| 104 | Red blood cell distribution width: Genetic evidence for aging pathways in 116,666 volunteers. PLoS<br>ONE, 2017, 12, e0185083.                                                                                                                                     | 1.1 | 49        |
| 105 | A Low-Frequency Inactivating <i>AKT2</i> Variant Enriched in the Finnish Population Is Associated<br>With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes, 2017, 66, 2019-2032.                                                                          | 0.3 | 47        |
| 106 | Stratification by Smoking Status Reveals an Association of CHRNA5-A3-B4 Genotype with Body Mass<br>Index in Never Smokers. PLoS Genetics, 2014, 10, e1004799.                                                                                                      | 1.5 | 45        |
| 107 | Young-Onset Type 2 Diabetes Families Are the Major Contributors to Genetic Loci in the Diabetes UK<br>Warren 2 Genome Scan and Identify Putative Novel Loci on Chromosomes 8q21, 21q22, and 22q11.<br>Diabetes, 2003, 52, 1857-1863.                               | 0.3 | 43        |
| 108 | Effects of body mass index on relationship status, social contact and socio-economic position:<br>Mendelian randomization and within-sibling study in UK Biobank. International Journal of<br>Epidemiology, 2020, 49, 1173-1184.                                   | 0.9 | 42        |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Genetic Evidence for Different Adiposity Phenotypes and Their Opposing Influences on Ectopic Fat and<br>Risk of Cardiometabolic Disease. Diabetes, 2021, 70, 1843-1856.                                                             | 0.3 | 42        |
| 110 | Effects of apolipoprotein B on lifespan and risks of major diseases including type 2 diabetes: a<br>mendelian randomisation analysis using outcomes in first-degree relatives. The Lancet Healthy<br>Longevity, 2021, 2, e317-e326. | 2.0 | 41        |
| 111 | Quantifying the extent to which index event biases influence large genetic association studies. Human<br>Molecular Genetics, 2017, 26, ddw433.                                                                                      | 1.4 | 40        |
| 112 | Associations Between Glycemic Traits and Colorectal Cancer: A Mendelian Randomization Analysis.<br>Journal of the National Cancer Institute, 2022, 114, 740-752.                                                                    | 3.0 | 35        |
| 113 | Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.                                                                                                          | 2.4 | 31        |
| 114 | Is disrupted sleep a risk factor for Alzheimer's disease? Evidence from a two-sample Mendelian<br>randomization analysis. International Journal of Epidemiology, 2021, 50, 817-828.                                                 | 0.9 | 31        |
| 115 | Quantification of the overall contribution of gene-environment interaction for obesity-related traits. Nature Communications, 2020, 11, 1385.                                                                                       | 5.8 | 31        |
| 116 | Filaggrin gene mutations are associated with asthma and eczema in later life. Journal of Allergy and<br>Clinical Immunology, 2008, 122, 834-836.                                                                                    | 1.5 | 30        |
| 117 | A rapid screening method for hepatocyte nuclear factor 1 alpha frameshift mutations; prevalence in maturity-onset diabetes of the young and late-onset non-insulin dependent diabetes. Human Genetics, 1997, 101, 351-354.          | 1.8 | 29        |
| 118 | Higher adiposity and mental health: causal inference using Mendelian randomization. Human<br>Molecular Genetics, 2021, 30, 2371-2382.                                                                                               | 1.4 | 29        |
| 119 | Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 379-384.                         | 3.3 | 28        |
| 120 | Influence of cell distribution and diabetes status on the association between mitochondrial<br><scp>DNA</scp> copy number and aging phenotypes in the In <scp>CHIANTI</scp> study. Aging Cell, 2018,<br>17, e12683.                 | 3.0 | 26        |
| 121 | Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity.<br>Diabetes, 2020, 69, 2806-2818.                                                                                                   | 0.3 | 26        |
| 122 | Identifying molecular mediators of the relationship between body mass index and endometrial cancer<br>risk: a Mendelian randomization analysis. BMC Medicine, 2022, 20, 125.                                                        | 2.3 | 26        |
| 123 | Assessing the Causal Role of Sleep Traits on Glycated Hemoglobin: A Mendelian Randomization Study.<br>Diabetes Care, 2022, 45, 772-781.                                                                                             | 4.3 | 25        |
| 124 | Statins and type 2 diabetes: genetic studies on target. Lancet, The, 2015, 385, 310-312.                                                                                                                                            | 6.3 | 24        |
| 125 | Association Analysis of 29,956 Individuals Confirms That a Low-Frequency Variant at <i>CCND2</i> Halves the Risk of Type 2 Diabetes by Enhancing Insulin Secretion. Diabetes, 2015, 64, 2279-2285.                                  | 0.3 | 24        |
| 126 | Chronotype Genetic Variant in PER2 is Associated with Intrinsic Circadian Period in Humans. Scientific Reports, 2019, 9, 5350.                                                                                                      | 1.6 | 24        |

| #   | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | A genome-wide association study identifies 5 loci associated with frozen shoulder and implicates diabetes as a causal risk factor. PLoS Genetics, 2021, 17, e1009577.                                                                      | 1.5  | 23        |
| 128 | Exome-Derived Adiponectin-Associated Variants Implicate Obesity and Lipid Biology. American Journal of Human Genetics, 2019, 105, 15-28.                                                                                                   | 2.6  | 21        |
| 129 | Genetic evidence that higher central adiposity causes gastro-oesophageal reflux disease: a Mendelian randomization study. International Journal of Epidemiology, 2020, 49, 1270-1281.                                                      | 0.9  | 20        |
| 130 | Analysis with the exome array identifies multiple new independent variants in lipid loci. Human<br>Molecular Genetics, 2016, 25, 4094-4106.                                                                                                | 1.4  | 19        |
| 131 | Across-cohort QC analyses of GWAS summary statistics from complex traits. European Journal of Human Genetics, 2017, 25, 137-146.                                                                                                           | 1.4  | 18        |
| 132 | Piecing together the FTO jigsaw. Genome Biology, 2011, 12, 104.                                                                                                                                                                            | 13.9 | 16        |
| 133 | A genome-wide association study implicates multiple mechanisms influencing raised urinary<br>albumin–creatinine ratio. Human Molecular Genetics, 2019, 28, 4197-4207.                                                                      | 1.4  | 16        |
| 134 | Machine Learning based histology phenotyping to investigate the epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits. PLoS Computational Biology, 2020, 16, e1008044.                                        | 1.5  | 16        |
| 135 | Mendelian Randomization Analyses Suggest Childhood Body Size Indirectly Influences End Points<br>From Across the Cardiovascular Disease Spectrum Through Adult Body Size. Journal of the American<br>Heart Association, 2021, 10, e021503. | 1.6  | 16        |
| 136 | Do sex hormones confound or mediate the effect of chronotype on breast and prostate cancer? A<br>Mendelian randomization study. PLoS Genetics, 2022, 18, e1009887.                                                                         | 1.5  | 14        |
| 137 | Are the causes of obesity primarily environmental? No. BMJ, The, 2012, 345, e5844-e5844.                                                                                                                                                   | 3.0  | 13        |
| 138 | An Ant Colony Optimization and Tabu List Approach to the Detection of Gene-Gene Interactions in<br>Genome-Wide Association Studies [Research Frontier]. IEEE Computational Intelligence Magazine, 2015,<br>10, 54-65.                      | 3.4  | 13        |
| 139 | Mendelian randomisation in type 2 diabetes and coronary artery disease. Current Opinion in Genetics and Development, 2018, 50, 111-120.                                                                                                    | 1.5  | 13        |
| 140 | Functional characterisation of ADIPOQ variants using individuals recruited by genotype. Molecular and Cellular Endocrinology, 2016, 428, 49-57.                                                                                            | 1.6  | 12        |
| 141 | Testing the role of predicted gene knockouts in human anthropometric trait variation. Human<br>Molecular Genetics, 2016, 25, 2082-2092.                                                                                                    | 1.4  | 10        |
| 142 | A Mendelian Randomization Study Provides Evidence That Adiposity and Dyslipidemia Lead to Lower<br>Urinary Albumin-to-Creatinine Ratio, a Marker of Microvascular Function. Diabetes, 2020, 69, 1072-1082.                                 | 0.3  | 10        |
| 143 | Disease consequences of higher adiposity uncoupled from its adverse metabolic effects using Mendelian randomisation. ELife, 2022, 11, .                                                                                                    | 2.8  | 10        |
| 144 | Higher maternal adiposity reduces offspring birthweight if associated with a metabolically favourable profile. Diabetologia, 2021, 64, 2790-2802.                                                                                          | 2.9  | 9         |

| #   | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Proposed mechanism for a novel insertion/deletion frameshift mutation (I414G415ATCG?CCA) in the hepatocyte nuclear factor 1 alpha (HNF-1?) gene which causes maturity-onset diabetes of the young (MODY). Human Mutation, 2000, 16, 273-273.               | 1.1  | 8         |
| 146 | Commentary: Genetic association studies see light at the end of the tunnel. International Journal of Epidemiology, 2008, 37, 133-135.                                                                                                                      | 0.9  | 8         |
| 147 | Evaluation of Common Type 2 Diabetes Risk Variants in a South Asian Population of Sri Lankan Descent.<br>PLoS ONE, 2014, 9, e98608.                                                                                                                        | 1.1  | 8         |
| 148 | Whole-genome sequencing to understand the genetic architecture of common gene expression and biomarker phenotypes. Human Molecular Genetics, 2015, 24, 1504-1512.                                                                                          | 1.4  | 8         |
| 149 | Unreliability of genotyping arrays for detecting very rare variants in human genetic studies: Example<br>from a recent study of MC4R. Cell, 2021, 184, 1651.                                                                                               | 13.5 | 8         |
| 150 | <i>PLIN1</i> Haploinsufficiency Causes a Favorable Metabolic Profile. Journal of Clinical<br>Endocrinology and Metabolism, 2022, 107, e2318-e2323.                                                                                                         | 1.8  | 7         |
| 151 | Large Copy-Number Variants in UK Biobank Caused by Clonal Hematopoiesis May Confound Penetrance<br>Estimates. American Journal of Human Genetics, 2020, 107, 325-329.                                                                                      | 2.6  | 6         |
| 152 | Physiology Helps GWAS Take a Step Closer to Mechanism. Diabetes, 2014, 63, 1836-1837.                                                                                                                                                                      | 0.3  | 5         |
| 153 | Response to Prakash et al Genetics in Medicine, 2019, 21, 1884-1885.                                                                                                                                                                                       | 1.1  | 5         |
| 154 | Ant colony optimisation of decision tree and contingency table models for the discovery of gene–gene interactions. IET Systems Biology, 2015, 9, 218-225.                                                                                                  | 0.8  | 4         |
| 155 | Babies of South Asian and European Ancestry Show Similar Associations With Genetic Risk Score for<br>Birth Weight Despite the Smaller Size of South Asian Newborns. Diabetes, 2022, 71, 821-836.                                                           | 0.3  | 3         |
| 156 | Simulated distributions from negative experiments highlight the importance of the body mass index<br>distribution in explaining depression–body mass index genetic risk score interactions. International<br>Journal of Epidemiology, 2022, 51, 1581-1592. | 0.9  | 2         |
| 157 | Fetal alleles predisposing to metabolically favorable adiposity are associated with higher birth weight. Human Molecular Genetics, 2022, 31, 1762-1775.                                                                                                    | 1.4  | 2         |
| 158 | Commentary: A new dawn for genetic epidemiology?. International Journal of Epidemiology, 2009, 38, 975-977.                                                                                                                                                | 0.9  | 1         |
| 159 | Independent test assessment using the extreme value distribution theory. BMC Proceedings, 2016, 10, 245-249.                                                                                                                                               | 1.8  | 1         |
| 160 | Genetically defined favourable adiposity is not associated with a clinically meaningful difference in<br>clinical course in people with type 2 diabetes but does associate with a favourable metabolic profile.<br>Diabetic Medicine, 2021, 38, e14531.    | 1.2  | 1         |
| 161 | Recent Progress in the Identification of Genes Predisposing to the Metabolic Syndrome. , 2006, , 143-162.                                                                                                                                                  |      | 0         |
| 162 | The Hunt for Low-Frequency Alleles Predisposing to Type 2 Diabetes and Related Cardiovascular Risk<br>Factors. Current Cardiovascular Risk Reports, 2015, 9, 1.                                                                                            | 0.8  | 0         |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Authors' reply to Toth. BMJ, The, 2016, 353, i1892.                                                                                                                                       | 3.0 | 0         |
| 164 | Title is missing!. , 2020, 16, e1008044.                                                                                                                                                  |     | 0         |
| 165 | Title is missing!. , 2020, 16, e1008044.                                                                                                                                                  |     | 0         |
| 166 | Title is missing!. , 2020, 16, e1008044.                                                                                                                                                  |     | 0         |
| 167 | Title is missing!. , 2020, 16, e1008044.                                                                                                                                                  |     | 0         |
| 168 | Title is missing!. , 2020, 16, e1008044.                                                                                                                                                  |     | 0         |
| 169 | Title is missing!. , 2020, 16, e1008044.                                                                                                                                                  |     | 0         |
| 170 | 130†Does visual imagery vividness have a genetic basis? A genome-wide associa- tion study of 1019<br>individuals. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A51.1-A51. | 0.9 | 0         |