
Yuhang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/160908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing the economic potential of large-scale carbonate-formation-free CO ₂ electrolysis. Catalysis Science and Technology, 2022, 12, 2912-2919.	4.1	13
2	Redox-mediated electrosynthesis of ethylene oxide from CO2 and water. Nature Catalysis, 2022, 5, 185-192.	34.4	40
3	Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nature Catalysis, 2022, 5, 251-258.	34.4	118
4	High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nature Catalysis, 2022, 5, 564-570.	34.4	197
5	Efficient Electrocatalytic CO2 Reduction to C2+ Alcohols at Defect-Site-Rich Cu Surface. Joule, 2021, 5, 429-440.	24.0	194
6	Heterogeneous Electrocatalysts for CO ₂ Reduction. ACS Applied Energy Materials, 2021, 4, 1034-1044.	5.1	31
7	Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule, 2021, 5, 706-719.	24.0	158
8	Designing Copperâ€Based Catalysts for Efficient Carbon Dioxide Electroreduction. Advanced Materials, 2021, 33, e2005798.	21.0	145
9	Towards Carbonâ€Neutral Methanol Production from Carbon Dioxide Electroreduction. ChemNanoMat, 2021, 7, 728-736.	2.8	17
10	Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nature Communications, 2021, 12, 2808.	12.8	91
11	Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nature Communications, 2021, 12, 2932.	12.8	97
12	Electrocatalytic Methane Oxidation Greatly Promoted by Chlorine Intermediates. Angewandte Chemie - International Edition, 2021, 60, 17398-17403.	13.8	43
13	Inhibiting carbonate formation using CO ₂ –CO–C ₂₊ tandems. SmartMat, 2021, 2, 423-425.	10.7	27
14	Highly Dispersed Indium Oxide Nanoparticles Supported on Carbon Nanorods Enabling Efficient Electrochemical CO ₂ Reduction. Small Science, 2021, 1, 2100029.	9.9	34
15	Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis. Applied Catalysis B: Environmental, 2021, 299, 120667.	20.2	55
16	Thiophene- and selenophene-based conjugated polymeric mixed ionic/electronic conductors. Journal of Chemical Physics, 2021, 155, 134704.	3.0	2
17	Valorizing carbon dioxide via electrochemical reduction on gasâ€diffusion electrodes. InformaÄnÃ- Materiály, 2021, 3, 1313-1332.	17.3	37
18	Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nature Catalysis, 2020, 3, 98-106.	34.4	325

#	Article	IF	CITATIONS
19	Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nature Catalysis, 2020, 3, 14-22.	34.4	120
20	Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nature Communications, 2020, 11, 3685.	12.8	72
21	High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer. ACS Energy Letters, 2020, 5, 2811-2818.	17.4	106
22	Electronâ€Deficient Cu Sites on Cu ₃ Ag ₁ Catalyst Promoting CO ₂ Electroreduction to Alcohols. Advanced Energy Materials, 2020, 10, 2001987.	19.5	117
23	Dual Coordination of Ti and Pb Using Bilinkable Ligands Improves Perovskite Solar Cell Performance and Stability. Advanced Functional Materials, 2020, 30, 2005155.	14.9	33
24	Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science, 2020, 368, 1228-1233.	12.6	196
25	Enhanced Nitrate-to-Ammonia Activity on Copper–Nickel Alloys via Tuning of Intermediate Adsorption. Journal of the American Chemical Society, 2020, 142, 5702-5708.	13.7	638
26	Molecular tuning of CO2-to-ethylene conversion. Nature, 2020, 577, 509-513.	27.8	682
27	Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nature Catalysis, 2020, 3, 75-82.	34.4	390
28	Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nature Communications, 2019, 10, 5814.	12.8	201
29	Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nature Communications, 2019, 10, 5186.	12.8	127
30	Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nature Catalysis, 2019, 2, 1124-1131.	34.4	214
31	Efficient solar-driven electrocatalytic CO2 reduction in a redox-medium-assisted system. Nature Communications, 2018, 9, 5003.	12.8	97
32	Copper adparticle enabled selective electrosynthesis of n-propanol. Nature Communications, 2018, 9, 4614.	12.8	153
33	Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nature Catalysis, 2018, 1, 946-951.	34.4	354
34	Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nature Communications, 2018, 9, 3828.	12.8	279
35	Hollow NiCo2Se4 microspheres composed of nanoparticles as multifunctional electrocatalysts for unassisted artificial photosynthesis. Electrochimica Acta, 2018, 283, 628-637.	5.2	32
36	Metal–Organic Frameworks Mediate Cu Coordination for Selective CO ₂ Electroreduction. Journal of the American Chemical Society, 2018, 140, 11378-11386.	13.7	326

#	Article	IF	CITATIONS
37	Biocompatible carbon nanotube fibers for implantable supercapacitors. Carbon, 2017, 122, 162-167.	10.3	105
38	Bridged-multi-octahedral cobalt oxide nanocrystals with a Co-terminated surface as an oxygen evolution and reduction electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 7416-7422.	10.3	23
39	Tuning of CO ₂ Reduction Selectivity on Metal Electrocatalysts. Small, 2017, 13, 1701809.	10.0	182
40	Nitrogenâ€Doped Coreâ€Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor. Advanced Energy Materials, 2017, 7, 1601814.	19.5	155
41	Superb Alkaline Hydrogen Evolution and Simultaneous Electricity Generation by Ptâ€Decorated Ni ₃ N Nanosheets. Advanced Energy Materials, 2017, 7, 1601390.	19.5	225
42	A fiber-shaped aqueous lithium ion battery with high power density. Journal of Materials Chemistry A, 2016, 4, 9002-9008.	10.3	132
43	Energy Storage: Achieving High Aqueous Energy Storage via Hydrogenâ€Generation Passivation (Adv.) Tj ETQq1	1 0.78431 21.0	l4 rgBT /Ove
44	Achieving High Aqueous Energy Storage via Hydrogenâ€Generation Passivation. Advanced Materials, 2016, 28, 7626-7632.	21.0	51
45	Separator-Integrated, Reversely Connectable Symmetric Lithium-Ion Battery. Small, 2016, 12, 1091-1097.	10.0	13
46	Myriophyllum-like hierarchical TiN@Ni ₃ N nanowire arrays for bifunctional water splitting catalysts. Journal of Materials Chemistry A, 2016, 4, 5713-5718.	10.3	134
47	A flexible ligand-based wavy layered metal–organic framework for lithium-ion storage. Journal of Colloid and Interface Science, 2015, 445, 320-325.	9.4	102
48	One-dimensional nanostructures for flexible supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16382-16392.	10.3	70
49	Freestanding 3D graphene/cobalt sulfide composites for supercapacitors and hydrogen evolution reaction. RSC Advances, 2015, 5, 6886-6891.	3.6	47
50	Direct growth of mesoporous carbon-coated Ni nanoparticles on carbon fibers for flexible supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2876-2882.	10.3	28
51	Indirect growth of mesoporous Bi@C core–shell nanowires for enhanced lithium-ion storage. Nanoscale, 2014, 6, 13236-13241.	5.6	66
52	Morphology-dependent vanadium oxide nanostructures grown on Ti foil for Li-ion battery. Journal of Colloid and Interface Science, 2014, 432, 297-301.	9.4	5
53	All-Nanowire Based Li-Ion Full Cells Using Homologous Mn2O3 and LiMn2O4. Nano Letters, 2014, 14, 1080-1084.	9.1	152
54	Aqueous Li-ion cells with superior cycling performance using multi-channeled polyaniline/Fe ₂ O ₃ nanotube anodes. Journal of Materials Chemistry A, 2014, 2, 20177-20181.	10.3	12

#	Article	IF	CITATIONS
55	Bias-free, solar-charged electric double-layer capacitors. Nanoscale, 2014, 6, 15316-15320.	5.6	13
56	CoNiO2/TiN–TiOxNy composites for ultrahigh electrochemical energy storage and simultaneous glucose sensing. Journal of Materials Chemistry A, 2014, 2, 10904.	10.3	19
57	Artificial metabolism-inspired photoelectrochemical probing of biomolecules and cells. Journal of Materials Chemistry A, 2014, 2, 15752-15757.	10.3	11
58	Fully Solar-Powered Photoelectrochemical Conversion for Simultaneous Energy Storage and Chemical Sensing. Nano Letters, 2014, 14, 3668-3673.	9.1	64
59	MnO Nanoparticle@Mesoporous Carbon Composites Grown on Conducting Substrates Featuring High-performance Lithium-ion Battery, Supercapacitor and Sensor. Scientific Reports, 2013, 3, 2693.	3.3	117
60	Prepartion and electrochemical performance of a cerium oxide–graphene nanocomposite as the anode material of a lithium ion battery. Scripta Materialia, 2011, 65, 339-342.	5.2	86