
Hubertus M Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1608844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Melting dynamics of a plasma crystal. Nature, 1996, 379, 806-809.	27.8	576
2	Condensed Plasmas under Microgravity. Physical Review Letters, 1999, 83, 1598-1601.	7.8	444
3	Ion drag force in complex plasmas. Physical Review E, 2002, 66, 046414.	2.1	293
4	Cold Atmospheric Plasma (CAP) Changes Gene Expression of Key Molecules of the Wound Healing Machinery and Improves Wound Healing In Vitro and In Vivo. PLoS ONE, 2013, 8, e79325.	2.5	265
5	PKE-Nefedov*: plasma crystal experiments on the International Space Station. New Journal of Physics, 2003, 5, 33-33.	2.9	232
6	Mach Cones in a Coulomb Lattice and a Dusty Plasma. Physical Review Letters, 1999, 83, 3649-3652.	7.8	215
7	Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Experimental Dermatology, 2013, 22, 284-289.	2.9	174
8	Cold atmospheric plasma devices for medical issues. Expert Review of Medical Devices, 2013, 10, 367-377.	2.8	166
9	Gravity Compensation in Complex Plasmas by Application of a Temperature Gradient. Physical Review Letters, 2002, 89, 175001.	7.8	164
10	Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: Results of an open retrospective randomized controlled study in vivo. Clinical Plasma Medicine, 2013, 1, 25-30.	3.2	162
11	Three-Dimensional Strongly Coupled Plasma Crystal under Gravity Conditions. Physical Review Letters, 2000, 85, 4064-4067.	7.8	159
12	Complex plasma laboratory PK-3 Plus on the International Space Station. New Journal of Physics, 2008, 10, 033036.	2.9	155
13	The plasma condensation: Liquid and crystalline plasmas. Physics of Plasmas, 1999, 6, 1769-1780.	1.9	154
14	Direct Observation of Mode-Coupling Instability in Two-Dimensional Plasma Crystals. Physical Review Letters, 2010, 104, 195001.	7.8	143
15	Dynamics of Lane Formation in Driven Binary Complex Plasmas. Physical Review Letters, 2009, 102, 085003.	7.8	138
16	Central Collisions of Charged Dust Particles in a Plasma. Physical Review Letters, 1997, 79, 1269-1272.	7.8	117
17	Highly Resolved Self-Excited Density Waves in a Complex Plasma. Physical Review Letters, 2007, 99, 095002.	7.8	116
18	Mach cone shocks in a two-dimensional Yukawa solid using a complex plasma. Physical Review E, 2000, 61, 5557-5572.	2.1	113

#	Article	IF	CITATIONS
19	First Observation of Electrorheological Plasmas. Physical Review Letters, 2008, 100, 095003.	7.8	103
20	Kinetic development of crystallization fronts in complex plasmas. Nature Physics, 2006, 2, 181-185.	16.7	100
21	Non-thermal plasma—More than five years of clinical experience. Clinical Plasma Medicine, 2013, 1, 19-23.	3.2	96
22	Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station. Review of Scientific Instruments, 2016, 87, 093505.	1.3	95
23	Complex plasma—the plasma state of soft matter. Soft Matter, 2011, 7, 1287-1298.	2.7	86
24	Formation and behaviour of dust particle clouds in a radio-frequency discharge: results in the laboratory and under microgravity conditions. New Journal of Physics, 2003, 5, 19-19.	2.9	83
25	Decharging of Complex Plasmas: First Kinetic Observations. Physical Review Letters, 2003, 90, 055003.	7.8	81
26	Highly Resolved Fluid Flows: "Liquid Plasmas―at the Kinetic Level. Physical Review Letters, 2004, 92, 175004.	7.8	80
27	Dissipative Dark Soliton in a Complex Plasma. Physical Review Letters, 2009, 102, 135002.	7.8	80
28	Force field inside the void in complex plasmas under microgravity conditions. Physical Review E, 2005, 71, 056401.	2.1	78
29	Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 753, 23-28.	1.7	77
30	Wave mode coupling due to plasma wakes in two-dimensional plasma crystals: In-depth view. Physics of Plasmas, 2011, 18, .	1.9	73
31	Transport of Microparticles in Weakly Ionized Gas-Discharge Plasmas under Microgravity Conditions. Physical Review Letters, 2003, 90, 245005.	7.8	69
32	Void Closure in Complex Plasmas under Microgravity Conditions. Physical Review Letters, 2007, 98, 265006.	7.8	69
33	Freezing and Melting of 3D Complex Plasma Structures under Microgravity Conditions Driven by Neutral Gas Pressure Manipulation. Physical Review Letters, 2011, 106, 205001.	7.8	69
34	Nonlinear waves externally excited in a complex plasma under microgravity conditions. New Journal of Physics, 2008, 10, 033037.	2.9	64
35	Wave propagation and damping in plasma crystals. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 496-500.	2.1	62
36	The â€~classical tunnelling effect'—observations and theory. New Journal of Physics, 2006, 8, 7-7.	2.9	62

#	Article	IF	CITATIONS
37	Fluid-solid phase transitions in three-dimensional complex plasmas under microgravity conditions. Physical Review E, 2012, 85, 066407.	2.1	62
38	Levitation of cylindrical particles in the sheath of an rf plasma. Physical Review E, 2001, 63, 036406.	2.1	60
39	Solid/liquid/gaseous phase transitions in plasma crystals. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 501-505.	2.1	56
40	Electrostatic modes in collisional complex plasmas under microgravity conditions. Physical Review E, 2004, 69, 066401.	2.1	55
41	Critical Point in Complex Plasmas. Physical Review Letters, 2006, 96, 015001.	7.8	54
42	Complex-plasma manipulation by radiofrequency biasing. Plasma Physics and Controlled Fusion, 2004, 46, B495-B509.	2.1	52
43	Fluid phase separation in binary complex plasmas. Europhysics Letters, 2009, 85, 45001.	2.0	52
44	Collective Effects in Vortex Movements in Complex Plasmas. Physical Review Letters, 2014, 112, 115002.	7.8	51
45	Kinetics of Fluid Demixing in Complex Plasmas: Role of Two-Scale Interactions. Physical Review Letters, 2010, 105, 045001.	7.8	49
46	Direct measurement of the speed of sound in a complex plasma under microgravity conditions. Europhysics Letters, 2011, 96, 55001.	2.0	49
47	Fluid approach to evaluate sound velocity in Yukawa systems and complex plasmas. Physical Review E, 2015, 91, 033110.	2.1	48
48	Diagnostics of the Electronegative Plasma Sheath at Low Pressures Using Microparticles. Physical Review Letters, 2004, 93, 185001.	7.8	46
49	Practical thermodynamics of Yukawa systems at strong coupling. Journal of Chemical Physics, 2015, 142, 194903.	3.0	46
50	Measurement of the Interaction Force among Particles in Three-Dimensional Plasma Clusters. Physical Review Letters, 2006, 96, 115001.	7.8	45
51	The Bohm sheath criterion in strongly coupled complex plasmas. New Journal of Physics, 2009, 11, 073013.	2.9	45
52	Complex-plasma boundaries. Physical Review E, 2002, 66, 056411.	2.1	42
53	First Direct Measurement of Optical Phonons in 2D Plasma Crystals. Physical Review Letters, 2009, 103, 215001.	7.8	42
54	Cold atmospheric plasma for local infection control and subsequent pain reduction in a patient with chronic post-operative ear infection. New Microbes and New Infections, 2013, 1, 41-43.	1.6	42

#	Article	IF	CITATIONS
55	Practical expressions for the internal energy and pressure of Yukawa fluids. Physical Review E, 2015, 91, 023108.	2.1	41
56	Formation of Bubbles, Blobs, and Surface Cusps in Complex Plasmas. Physical Review Letters, 2009, 102, 255005.	7.8	39
57	Comment on "Measurement of the ion drag force on falling dust particles and its relation to the void formation in complex (dusty) plasmas―[Phys. Plasmas 10, 1278 (2003)]. Physics of Plasmas, 2003, 10, 4579-4581.	1.9	38
58	lon sphere model for Yukawa systems (dusty plasmas). Physics of Plasmas, 2014, 21, .	1.9	37
59	On the long-waves dispersion in Yukawa systems. Physics of Plasmas, 2016, 23, .	1.9	37
60	Structural properties of 3D complex plasmas: experiments versus simulations. Plasma Physics and Controlled Fusion, 2009, 51, 124028.	2.1	36
61	Particle charge in PK-4 dc discharge from ground-based and microgravity experiments. Physics of Plasmas, 2019, 26, .	1.9	35
62	The plasma-sheath boundary near the adaptive electrode as traced by particles. New Journal of Physics, 2003, 5, 92-92.	2.9	33
63	Mach cones in a three-dimensional complex plasma. Europhysics Letters, 2009, 85, 45002.	2.0	33
64	Kinetics of the melting front in two-dimensional plasma crystals: Complementary analysis with the particle image and particle tracking velocimetries. Physical Review E, 2012, 86, 046401.	2.1	33
65	Ten Years of Plasma Crystals - from ICPIG (Bochum) to ICPIG (Greifswald). Contributions To Plasma Physics, 2004, 44, 450-457.	1.1	32
66	Charge-induced gelation of microparticles. New Journal of Physics, 2005, 7, 227-227.	2.9	32
67	Waves in a dusty plasma over the illuminated part of the Moon. Journal of Plasma Physics, 2013, 79, 1071-1074.	2.1	32
68	Bactericidal Agents Produced by Surface Micro-Discharge (SMD) Plasma by Controlling Gas Compositions. Plasma Processes and Polymers, 2014, 11, 426-436.	3.0	30
69	From Fluid Flows to Crystallization: New Results from Complex Plasmas. Physica Scripta, 2004, T107, 59.	2.5	29
70	Cold atmospheric plasma – A new technology for spacecraft component decontamination. Planetary and Space Science, 2014, 90, 60-71.	1.7	29
71	Comprehensive experimental study of heartbeat oscillations observed under microgravity conditions in the PK-3 Plus laboratory on board the International Space Station. Physics of Plasmas, 2011, 18, 053701.	1.9	28
72	Dust density waves in a dc flowing complex plasma with discharge polarity reversal. Physics of Plasmas, 2018, 25, 083705.	1.9	28

#	Article	IF	CITATIONS
73	Slowing of acoustic waves in electrorheological and string-fluid complex plasmas. New Journal of Physics, 2020, 22, 083079.	2.9	28
74	Agglomeration of microparticles in complex plasmas. Physics of Plasmas, 2010, 17, .	1.9	26
75	Experimental investigation on lane formation in complex plasmas under microgravity conditions. New Journal of Physics, 2012, 14, 073058.	2.9	26
76	Complex plasma research on the International Space Station. Plasma Physics and Controlled Fusion, 2019, 61, 014004.	2.1	26
77	Dust-acoustic dispersion relation in three-dimensional complex plasmas under microgravity. New Journal of Physics, 2007, 9, 327-327.	2.9	25
78	The effect of a direct current field on the microparticle charge in the plasma afterglow. Physics of Plasmas, 2013, 20, 123702.	1.9	25
79	Slow Dynamics in a Quasi-Two-Dimensional Binary Complex Plasma. Physical Review Letters, 2019, 123, 185002.	7.8	25
80	Circulation' dynamo in complex plasma. New Journal of Physics, 2007, 9, 39-39.	2.9	24
81	Shear flow instability at the interface among two streams of a highly dissipative complex plasma. Europhysics Letters, 2011, 96, 15001.	2.0	24
82	In vivo skin treatment using two portable plasma devices: Comparison of a direct and an indirect cold atmospheric plasma treatment. Clinical Plasma Medicine, 2013, 1, 35-39.	3.2	24
83	Synchronization of particle motion induced by mode coupling in a two-dimensional plasma crystal. Physical Review E, 2014, 89, 053108.	2.1	24
84	Wave turbulence observed in an auto-oscillating complex (dusty) plasma. Europhysics Letters, 2015, 110, 35001.	2.0	24
85	Complex Plasma Research under Microgravity Conditions: PKâ€3 Plus Laboratory on the International Space Station. Contributions To Plasma Physics, 2016, 56, 253-262.	1.1	23
86	Effects of cold atmospheric plasma on mucosal tissue culture. Journal Physics D: Applied Physics, 2013, 46, 045401.	2.8	22
87	Nonlinear regime of the mode-coupling instability in 2D plasma crystals. Europhysics Letters, 2014, 106, 45001.	2.0	22
88	Auto-oscillations in complex plasmas. New Journal of Physics, 2010, 12, 043006.	2.9	21
89	Interaction of two-dimensional plasma crystals with upstream charged particles. Europhysics Letters, 2012, 99, 55001.	2.0	21
90	Glass-transition properties of Yukawa potentials: From charged point particles to hard spheres. Physical Review E, 2014, 89, 063105.	2.1	21

#	Article	IF	CITATIONS
91	On the estimation of sound speed in two-dimensional Yukawa fluids. Physics of Plasmas, 2015, 22, .	1.9	21
92	Thermodynamics of Yukawa fluids near the one-component-plasma limit. Physics of Plasmas, 2015, 22, .	1.9	21
93	Complex Plasmas under Microgravity Conditions: Parabolic Flights. Physica Scripta, 2001, T89, 16.	2.5	20
94	Structural properties of 3D complex plasmas under microgravity conditions. Europhysics Letters, 2010, 92, 15003.	2.0	20
95	Convection in a dusty radio-frequency plasma under the influence of a thermal gradient. New Journal of Physics, 2011, 13, 083034.	2.9	20
96	Nonviscous motion of a slow particle in a dust crystal under microgravity conditions. Physical Review E, 2012, 86, 016401.	2.1	20
97	Density distribution of a dust cloud in three-dimensional complex plasmas. Physical Review E, 2016, 94, 033204.	2.1	20
98	Coupling of Noncrossing Wave Modes in a Two-Dimensional Plasma Crystal. Physical Review Letters, 2017, 119, 255001.	7.8	20
99	Complex (dusty) plasmas—kinetic studies of strong coupling phenomena. Physics of Plasmas, 2012, 19, .	1.9	19
100	Channeling of particles and associated anomalous transport in a two-dimensional complex plasma crystal. Physical Review E, 2014, 89, 021101.	2.1	19
101	Synthesis of water ice particles in a plasma chamber. Journal of Geophysical Research, 2010, 115, .	3.3	18
102	Electrorheological Complex Plasmas. IEEE Transactions on Plasma Science, 2010, 38, 733-740.	1.3	18
103	Modeling of Cassini's charging at Saturn orbit insertion flyby. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	18
104	Three-Dimensional Structure of Mach Cones in Monolayer Complex Plasma Crystals. Physical Review Letters, 2012, 109, 175001.	7.8	18
105	The formation and transport phenomena of nanometre-sized particles in a dc plasma. New Journal of Physics, 2012, 14, 023024.	2.9	18
106	Agglomeration of mesoscopic particles in plasma. New Journal of Physics, 2009, 11, 103013.	2.9	17
107	Multiple phase transitions associated with charge cannibalism effect in complex (dusty) plasmas. Europhysics Letters, 2010, 91, 25001.	2.0	17
108	On the heterogeneous character of the heartbeat instability in complex (dusty) plasmas. Physics of Plasmas, 2012, 19, .	1.9	17

#	Article	IF	CITATIONS
109	Fingerprints of different interaction mechanisms on the collective modes in complex (dusty) plasmas. Physics of Plasmas, 2017, 24, .	1.9	17
110	Density waves at the interface of a binary complex plasma. Europhysics Letters, 2017, 117, 25001.	2.0	17
111	Excitation of low-frequency dust density waves in flowing complex plasmas. Physics of Plasmas, 2019, 26, 053702.	1.9	17
112	Removing dust particles from a large area discharge. Applied Physics Letters, 2009, 94, 081502.	3.3	16
113	Transverse oscillations in a single-layer dusty plasma under microgravity. Physics of Plasmas, 2009, 16,	1.9	16
114	Lane Formation in Driven Binary Complex Plasmas on the International Space Station. IEEE Transactions on Plasma Science, 2010, 38, 861-868.	1.3	16
115	Approximate expression for the electric potential around an absorbing particle in isotropic collisionless plasma. Physics of Plasmas, 2015, 22, 053704.	1.9	16
116	Three-dimensional structure of a string-fluid complex plasma. Physical Review Research, 2020, 2, .	3.6	16
117	Excitation of dust density waves in weak electric fields. Physics of Plasmas, 2012, 19, 023702.	1.9	15
118	Microparticles deep in the plasma sheath: Coulomb "explosion― Physics of Plasmas, 2012, 19, .	1.9	15
119	Autowaves in a dc complex plasma confined behind a de Laval nozzle. Europhysics Letters, 2013, 102, 45001.	2.0	15
120	Measurement of the speed of sound by observation of the Mach cones in a complex plasma under microgravity conditions. Physics of Plasmas, 2015, 22, .	1.9	15
121	Dissipative solitary wave at the interface of a binary complex plasma. Europhysics Letters, 2018, 122, 55001.	2.0	15
122	High speed laser tomography system. Review of Scientific Instruments, 2008, 79, 035102.	1.3	14
123	Initial stages in phase separation of binary complex plasmas: Numerical experiments. Europhysics Letters, 2011, 93, 55001.	2.0	14
124	Photophoretic force on microparticles in complex plasmas. New Journal of Physics, 2017, 19, 073015.	2.9	14
125	Observation of metallic sphere–complex plasma interactions in microgravity. New Journal of Physics, 2017, 19, 103019.	2.9	14
126	Dissipative dark solitons in a dc complex plasma. Europhysics Letters, 2010, 89, 25001.	2.0	13

#	Article	IF	CITATIONS
127	Model experiment for studying lane formation in binary complex plasmas. Europhysics Letters, 2012, 99, 45001.	2.0	13
128	Correlation and spectrum of dust acoustic waves in a radio-frequency plasma using PK-4 on the International Space Station. Physics of Plasmas, 2020, 27, .	1.9	13
129	Coalescence of complex plasma clouds. New Journal of Physics, 2006, 8, 25-25.	2.9	12
130	The â€~dipole instability' in complex plasmas and its role in plasma crystal melting. New Journal of Physics, 2006, 8, 54-54.	2.9	12
131	Effect of rotating electric field on 3D complex (dusty) plasma. Physics of Plasmas, 2011, 18, 063706.	1.9	12
132	Observation of particle pairing in a two-dimensional plasma crystal. Physical Review E, 2014, 89, 023103.	2.1	12
133	Plasma crystal dynamics measured with a three-dimensional plenoptic camera. Review of Scientific Instruments, 2016, 87, 033505.	1.3	12
134	Momentum transfer cross-section for ion scattering on dust particles. Physics of Plasmas, 2017, 24, .	1.9	12
135	Capacitively coupled rf discharge with a large amount of microparticles: Spatiotemporal emission pattern and microparticle arrangement. Physical Review E, 2017, 96, 033203.	2.1	12
136	Ekoplasma â \in " Experiments with grid electrodes in microgravity. AIP Conference Proceedings, 2018, , .	0.4	12
137	Latest Results on Complex Plasmas with the PK-3 Plus Laboratory on Board the International Space Station. Microgravity Science and Technology, 2018, 30, 581-589.	1.4	12
138	Spontaneous formation and spin of particle pairs in a single-layer complex plasma crystal. Europhysics Letters, 2015, 112, 45003.	2.0	11
139	Transverse ionization instability of the elongated dust cloud in the gas discharge uniform positive column under microgravity conditions. Journal of Physics: Conference Series, 2016, 774, 012174.	0.4	11
140	Elementary Processes in Complex Plasmas. Lecture Notes in Physics, 2008, , 67-140.	0.7	11
141	Shear flow in a three-dimensional complex plasma in microgravity conditions. Physical Review Research, 2020, 2, .	3.6	11
142	Complex Plasmas under Microgravity Conditions: First Results from PKE-Nefedov. AIP Conference Proceedings, 2002, , .	0.4	10
143	Energy relaxation and vibrations in small 3D plasma clusters. New Journal of Physics, 2008, 10, 043028.	2.9	10
144	Effect of high-voltage nanosecond pulses on complex plasmas. Physics of Plasmas, 2009, 16, 113705.	1.9	10

#	Article	IF	CITATIONS
145	String structures in driven 3D complex-plasma clusters. Europhysics Letters, 2012, 100, 35001.	2.0	10
146	Direct experimental observation of binary agglomerates in complex plasmas. Applied Physics Letters, 2012, 100, 264101.	3.3	10
147	Anisotropic confinement effects in a two-dimensional plasma crystal. Physical Review E, 2016, 93, 013204.	2.1	10
148	Wake-Mediated Propulsion of an Upstream Particle in Two-Dimensional Plasma Crystals. Physical Review Letters, 2017, 118, 075002.	7.8	10
149	Plasma afterglow circulation apparatus for decontamination of spacecraft equipment. AIP Advances, 2018, 8, .	1.3	10
150	"Zyflex― Next generation plasma chamber for complex plasma research in space. Review of Scientific Instruments, 2021, 92, 103505.	1.3	10
151	Non-equilibrium phase transitions in complex plasma. Plasma Physics and Controlled Fusion, 2010, 52, 124042.	2.1	9
152	Spontaneous pairing and cooperative movements of micro-particles in a two dimensional plasma crystal. Physics of Plasmas, 2015, 22, 053703.	1.9	9
153	Dynamics of cluster particles in a dense plasma. New Journal of Physics, 2006, 8, 203-203.	2.9	8
154	Dust density waves in a complex plasma layer. Physics of Plasmas, 2007, 14, .	1.9	8
155	Complex plasmas – new discoveries in strong coupling physics. Applied Physics B: Lasers and Optics, 2007, 89, 527-534.	2.2	8
156	Dusty plasma diagnostics methods for charge, electron temperature, and ion density. Physics of Plasmas, 2010, 17, .	1.9	8
157	Nonlinear structures of strongly coupled complex plasmas in the proximity of a presheath/sheath edge. New Journal of Physics, 2010, 12, 073038.	2.9	8
158	Network analysis of three-dimensional complex plasma clusters in a rotating electric field. Physical Review E, 2014, 89, 023104.	2.1	8
159	Interaction of a supersonic particle with a three-dimensional complex plasma. Physics of Plasmas, 2018, 25, .	1.9	8
160	Theory of a cavity around a large floating sphere in complex (dusty) plasma. Physical Review E, 2019, 99, 053210.	2.1	8
161	Influence of temporal variations in plasma conditions on the electric potential near self-organized dust chains. Physics of Plasmas, 2022, 29, .	1.9	8
162	Dressed particle simulation of dusty plasmas. Physics of Plasmas, 2005, 12, 022309.	1.9	7

#	Article	IF	CITATIONS
163	Controlled particle transport in a plasma chamber with striped electrode. Physics of Plasmas, 2009, 16, 123702.	1.9	7
164	Cassini capturing of freshlyâ€produced waterâ€group ions in the Enceladus torus. Geophysical Research Letters, 2012, 39, .	4.0	7
165	Particle velocity distribution in a three-dimensional dusty plasma under microgravity conditions. AIP Conference Proceedings, 2018, , .	0.4	7
166	Influence of dust particles on the neon spectral line intensities at the uniform positive column of dc discharge at the space apparatus "Plasma Kristall-4― Journal of Physics: Conference Series, 2018, 946, 012143.	0.4	7
167	New radio-frequency setup for studying large 2D complex plasma crystals. AIP Advances, 2018, 8, .	1.3	7
168	Long-term evolution of the three-dimensional structure of string-fluid complex plasmas in the PK-4 experiment. Physical Review E, 2021, 103, 063212.	2.1	7
169	Excitation of progressing dust ionization waves on PK-4 facility. Physics of Plasmas, 2021, 28, .	1.9	7
170	Plasma crystals and liquid plasmas. , 1998, , .		6
171	PKE-Nefedov — Complex plasma research on the international space station. Microgravity Science and Technology, 2005, 16, 317-321.	1.4	6
172	Experiments with microrods in a radio-frequency plasma sheath. Physics of Plasmas, 2006, 13, 063502.	1.9	6
173	Parameters of a collisional radio-frequency sheath and dust characteristics resulting from the microparticle levitation. Physics of Plasmas, 2009, 16, 103505.	1.9	6
174	Study of the 3D plasma cluster environment by emission spectroscopy. New Journal of Physics, 2009, 11, 113023.	2.9	6
175	Traveling electric field probed by a fine particle above voltage-modulated strips in a striped electrode device. Physics of Plasmas, 2010, 17, .	1.9	6
176	Generation of a Double Layer at the Interface of Strongly Coupled Complex Plasmas. IEEE Transactions on Plasma Science, 2010, 38, 869-873.	1.3	6
177	Synthesis of diamond fine particles on levitated seed particles in a rf CH4/H2 plasma chamber equipped with a hot filament. Journal of Applied Physics, 2012, 112, 073303.	2.5	6
178	Reasons Why We Need Cold Atmospheric Plasmas in Bacteria-Related Diseases in Medicine. Plasma Medicine, 2012, 2, 85-96.	0.6	6
179	Measurement of gas temperatures in dust-free and dusty argon discharges. Journal Physics D: Applied Physics, 2020, 53, 075203.	2.8	6
180	Dim and bright void regimes in capacitively-coupled RF complex plasmas. Plasma Sources Science and Technology, 2021, 30, 035014.	3.1	6

#	Article	IF	CITATIONS
181	Charge calculations of dust particles in a plasma from their trajectories during central collisions. , 1998, , .		5
182	Double layer formation at the interface of complex plasmas. Physics of Plasmas, 2008, 15, 082104.	1.9	5
183	Synchronization of particle motion in compressed two-dimensional plasma crystals. Europhysics Letters, 2015, 110, 65001.	2.0	5
184	Dynamics of spinning particle pairs in a single-layer complex plasma crystal. Physical Review E, 2017, 96, 011201.	2.1	5
185	Crystal–liquid phase transitions in three-dimensional complex plasma under microgravity conditions. Journal of Physics: Conference Series, 2018, 946, 012144.	0.4	5
186	Demixing in Binary Complex Plasma: Computer Simulation. IEEE Transactions on Plasma Science, 2011, 39, 2752-2753.	1.3	4
187	Increase of Kinetic Energy of Dusty Cluster Particles Due to Parametric Instability Caused by Nanosecond Electric Pulses. Contributions To Plasma Physics, 2011, 51, 529-532.	1.1	4
188	Wake turbulence observed behind an upstream "extra―particle in a complex (dusty) plasma. Europhysics Letters, 2016, 114, 55002.	2.0	4
189	Forced mode coupling in 2D complex plasmas. Europhysics Letters, 2016, 115, 45002.	2.0	4
190	Complex plasma research on ISS: PK-3 Plus, PK-4 and impact/plasmalab. Acta Astronautica, 2008, 63, 53-60.	3.2	3
191	Collective effects in complex plasma. Plasma Sources Science and Technology, 2010, 19, 065026.	3.1	3
192	Particles Inside the Void of a Complex Plasma. IEEE Transactions on Plasma Science, 2011, 39, 2758-2759.	1.3	3
193	Experimental determination of particle charge in highly collisional plasma. AIP Conference Proceedings, 2011, , .	0.4	3
194	Frequency dependence of microparticle charge in a radio frequency discharge with Margenau electron velocity distribution. Physics of Plasmas, 2011, 18, 014501.	1.9	3
195	High-voltage nanosecond pulses in a low-pressure radio-frequency discharge. Physical Review E, 2013, 87, 063105.	2.1	3
196	Assessing particle kinematics via template matching algorithms. Optics Express, 2016, 24, 7987.	3.4	3
197	Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates. Physical Review E, 2016, 93, 053202.	2.1	3
198	Penetration of a supersonic particle at the interface in a binary complex plasma. Physical Review E, 2021, 103, 013205.	2.1	3

#	Article	IF	CITATIONS
199	Time-Dependent Shear Motion in a Strongly Coupled Dusty Plasma in PK-4 on the International Space Station (ISS). IEEE Transactions on Plasma Science, 2021, 49, 2972-2978.	1.3	3
200	Heartbeat instability as auto-oscillation between dim and bright void regimes. Physical Review E, 2021, 104, 045212.	2.1	3
201	Heat transport in a flowing complex plasma in microgravity conditions. Physics of Plasmas, 2021, 28, .	1.9	3
202	The approach to diamond growth on levitating seed particles. Applied Surface Science, 2007, 254, 177-180.	6.1	2
203	Universal properties of the melting curves for a wide class of interparticle interactions. , 2011, , .		2
204	Bursting Bubbles in a Complex Plasma. IEEE Transactions on Plasma Science, 2011, 39, 2726-2727.	1.3	2
205	Levitation and collection of diamond fine particles in the rf plasma chamber equipped with a hot filament. Physics of Plasmas, 2011, 18, .	1.9	2
206	Dust Density Waves in Weak Electric Fields: Effect of the Dust Number Density. IEEE Transactions on Plasma Science, 2013, 41, 2446-2450.	1.3	2
207	Publisher's Note: High-voltage nanosecond pulses in a low-pressure radio-frequency discharge [Phys. Rev. E87, 063105 (2013)]. Physical Review E, 2013, 87, .	2.1	2
208	Dust interferometers in plasmas. Physical Review E, 2016, 93, 031201.	2.1	2
209	Experiments on phase transitions in three-dimensional dusty plasma under microgravity conditions. Journal of Physics: Conference Series, 2017, 927, 012037.	0.4	2
210	New approach to measurement of the three-dimensional crystallization front propagation velocity in strongly coupled complex plasma. Plasma Sources Science and Technology, 2019, 28, 065014.	3.1	2
211	Complex Plasma — Why It Is an Unusual State of Matter?. Lecture Notes in Physics, 2008, , 1-45.	0.7	1
212	Diagnosis in Complex Plasmas for Microgravity Experiments (PK-3 plus). AIP Conference Proceedings, 2008, , .	0.4	1
213	Oblique interactions of dust density waves. , 2010, , .		1
214	PREFACE: Dustyâ^•Complex Plasmas: Basic and Interdisciplinary Research. , 2011, , .		1
215	Interpenetration of two clouds of microparticles in complex plasma under microgravity conditions. AIP Conference Proceedings, 2011, , .	0.4	1
216	Freezing and melting of 3D complex plasma structures driven by neutral gas pressure manipulation in PK-3 Plus experiment. AIP Conference Proceedings, 2011, , .	0.4	1

#	Article	IF	CITATIONS
217	Structural properties of dense hard sphere systems near random close packing. AIP Conference Proceedings, 2011, , .	0.4	1
218	Study of the Projectile Motion in a Dust Crystal Under Microgravity Conditions. IEEE Transactions on Plasma Science, 2014, 42, 2678-2679.	1.3	1
219	Supersonic particle in a low damped complex plasma under microgravity conditions. AIP Conference Proceedings, 2018, , .	0.4	1
220	Comments on Other Dust Structures: Concluding Remarks. Lecture Notes in Physics, 2008, , 333-363.	0.7	1
221	Polarization of transverse modes in plasma crystals. Physics of Plasmas, 2006, 13, 094505.	1.9	0
222	Mono-layer Plasma Crystals and Clusters. Lecture Notes in Physics, 2008, , 289-331.	0.7	0
223	New Directions of Research in Complex Plasmas on the International Space Station. AIP Conference Proceedings, 2008, , .	0.4	0
224	Basic mechanisms of circulation in complex plasmas. , 2008, , .		0
225	Fluid Complex Plasmasâ \in "Studies at the Particle Level. AIP Conference Proceedings, 2008, , .	0.4	0
226	Anisotropic plasma cyrstals: Phase diagram. , 2009, , .		0
227	Dust removal in radio-frequency plasmas by a traveling potential modulation. , 2010, , .		0
228	Numerical experiments on 2D strongly coupled complex plasmas. Journal of Physics: Conference Series, 2010, 257, 012020.	0.4	0
229	A memoir of the scientific work of Beatrice Maria Annaratone. Plasma Physics and Controlled Fusion, 2010, 52, 124001.	2.1	0
230	Mode coupling due to ion wakes in 2D complex plasma crystals. , 2011, , .		0
231	Exploring the limits of cooperative phenomena using complex plasmas. AIP Conference Proceedings, 2011, , .	0.4	0
232	Dissipative Dark Soliton in a Complex Plasma. IEEE Transactions on Plasma Science, 2011, 39, 2720-2721.	1.3	0
233	Experimental analysis of surface wave in complex plasmas under microgravity condition. , 2011, , .		0
234	Initial stages in phase separation of binary complex plasmas: Numerical experiments. , 2011, , .		0

#	Article	IF	CITATIONS
235	Formation of Jet Propulsion Near Dust Particle in Plasma. , 2011, , .		0
236	The charging of dust particles in the range of very high discharge frequencies. AIP Conference Proceedings, 2011, , .	0.4	0
237	Growth of nanometer sized particles in a dc discharge. , 2012, , .		0
238	String formation in 3D particle clusters in complex plasmas. , 2012, , .		0
239	Interaction of 2D plasma crystals with upstream charged particle: Mach cones and channeling effect. , 2012, , .		0
240	Apparent surface tension in complex (dusty) plasmas. , 2012, , .		0
241	Optogalvanic control of instabilities in dusty plasma. Journal of Physics: Conference Series, 2016, 666, 012022.	0.4	0
242	Charges of a single grain and the grain in a cloud: Theory and experiments. Journal of Physics: Conference Series, 2020, 1556, 012078.	0.4	0
243	Why Complex Plasmas Have Many Applications in Future Technology?. Lecture Notes in Physics, 2008, , 47-66.	0.7	0
244	Collective Effects in Complex Plasmas. Lecture Notes in Physics, 2008, , 141-195.	0.7	0
245	Experiments on Plasma Crystals and Long-range Correlations. Lecture Notes in Physics, 2008, , 247-287.	0.7	0
246	Micro-particle Collective and Non-collective Pair Interactions. Lecture Notes in Physics, 2008, , 197-245.	0.7	0
247	Subsonic Motion of Projectile in a Fluid Complex Plasma under Microgravity Conditions. Ukrainian Journal of Physics, 2014, 59, 385-395.	0.2	0
248	Interfacial Phenomena in a Phase-Separated Binary Complex Plasma: Experiments and Simulations. , 2020, , .		0