Maiko T Uemura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1607836/publications.pdf

Version: 2024-02-01

516710 794594 1,092 19 16 19 citations h-index g-index papers 21 21 21 1806 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rapid Induction of Dopaminergic Neuron Loss Accompanied by Lewy Body-Like Inclusions in A53T BAC-SNCA Transgenic Mice. Neurotherapeutics, 2022, 19, 289-304.	4.4	3
2	Distinct characteristics of limbic-predominant age-related TDP-43 encephalopathy in Lewy body disease. Acta Neuropathologica, 2022, 143, 15-31.	7.7	29
3	<scp>α</scp> â€Synuclein Spread from Olfactory Bulb Causes Hyposmia, Anxiety, and Memory Loss in <scp>BACâ€<i>SNCA</i></scp> Mice. Movement Disorders, 2021, 36, 2036-2047.	3.9	34
4	α-Synuclein BAC transgenic mice exhibit RBD-like behaviour and hyposmia: a prodromal Parkinson's disease model. Brain, 2020, 143, 249-265.	7. 6	66
5	Limited spread of pathology within the brainstem of $\hat{l}\pm$ -synuclein BAC transgenic mice inoculated with preformed fibrils into the gastrointestinal tract. Neuroscience Letters, 2020, 716, 134651.	2.1	25
6	Loss of capillary pericytes and the blood–brain barrier in white matter in poststroke and vascular dementias and Alzheimer's disease. Brain Pathology, 2020, 30, 1087-1101.	4.1	60
7	Cell-to-Cell Transmission of Tau and î±-Synuclein. Trends in Molecular Medicine, 2020, 26, 936-952.	6.7	91
8	Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Frontiers in Aging Neuroscience, 2020, 12, 80.	3.4	139
9	Slow Progressive Accumulation of Oligodendroglial Alpha-Synuclein (α-Syn) Pathology in Synthetic α-Syn Fibril-Induced Mouse Models of Synucleinopathy. Journal of Neuropathology and Experimental Neurology, 2019, 78, 877-890.	1.7	46
10	Prolonged sensory impairment in the perineal region after painless delivery through lumbar epidural anesthesia. Neurology and Clinical Neuroscience, 2019, 7, 43-44.	0.4	2
11	Pericyteâ€derived bone morphogenetic protein 4 underlies white matter damage after chronic hypoperfusion. Brain Pathology, 2018, 28, 521-535.	4.1	33
12	Inoculation of \hat{l} ±-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. Molecular Neurodegeneration, 2018, 13, 21.	10.8	206
13	Zonisamide inhibits monoamine oxidase and enhances motor performance and social activity. Neuroscience Research, 2017, 124, 25-32.	1.9	26
14	A novel mice model for Parkinson's disease: Fibril-inoculated mutant α-Synuclein BAC Transgenic Mice. Journal of the Neurological Sciences, 2017, 381, 721.	0.6	0
15	High Fat Diet Enhances \hat{l}^2 -Site Cleavage of Amyloid Precursor Protein (APP) via Promoting \hat{l}^2 -Site APP Cleaving Enzyme 1/Adaptor Protein 2/Clathrin Complex Formation. PLoS ONE, 2015, 10, e0131199.	2.5	36
16	Potential interactions between pericytes and oligodendrocyte precursor cells in perivascular regions of cerebral white matter. Neuroscience Letters, 2015, 597, 164-169.	2.1	87
17	Copper enhances APP dimerization and promotes $\hat{Al^2}$ production. Neuroscience Letters, 2013, 547, 10-15.	2.1	49
18	Continuation of Exercise Is Necessary to Inhibit High Fat Diet-Induced \hat{l}^2 -Amyloid Deposition and Memory Deficit in Amyloid Precursor Protein Transgenic Mice. PLoS ONE, 2013, 8, e72796.	2.5	34

#	ARTICLE	IF	CITATIONS
19	Exercise Is More Effective than Diet Control in Preventing High Fat Diet-induced β-Amyloid Deposition and Memory Deficit in Amyloid Precursor Protein Transgenic Mice. Journal of Biological Chemistry, 2012, 287, 23024-23033.	3.4	122