
David Giron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1607817/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Plant metabolism and defence strategies in the flowering stage: Timeâ€dependent responses of leaves and flowers under attack. Plant, Cell and Environment, 2022, 45, 2841-2855.	5.7	7
2	Multiple Attack to Inflorescences of an Annual Plant Does Not Interfere with the Attraction of Parasitoids and Pollinators. Journal of Chemical Ecology, 2021, 47, 175-191.	1.8	4
3	Bacterial Long-Range Warfare: Aerial Killing of Legionella pneumophila by Pseudomonas fluorescens. Microbiology Spectrum, 2021, 9, e0040421.	3.0	6
4	The Evolution of Endophagy in Herbivorous Insects. Frontiers in Plant Science, 2020, 11, 581816.	3.6	24
5	Extend standardised methods and protocols for insect diet composition to insect energy and nutrient budgets. Journal of Insects As Food and Feed, 2020, 6, 441-443.	3.9	0
6	Gall-Inducing Parasites: Convergent and Conserved Strategies of Plant Manipulation by Insects and Nematodes. Annual Review of Phytopathology, 2020, 58, 1-22.	7.8	37
7	Symbiosis disruption in the olive fruit fly, <scp><i>Bactrocera oleae</i></scp> (Rossi), as a potential tool for sustainable control. Pest Management Science, 2020, 76, 3199-3207.	3.4	19
8	Salivary proteins of Phloeomyzus passerinii, a plant-manipulating aphid, and their impact on early gene responses of susceptible and resistant poplar genotypes. Plant Science, 2020, 294, 110468.	3.6	5
9	Editorial: Plant-Arthropod Interactions: Effectors and Elicitors of Arthropods and Their Associated Microbes. Frontiers in Plant Science, 2020, 11, 610160.	3.6	0
10	Gall Wasp Transcriptomes Unravel Potential Effectors Involved in Molecular Dialogues With Oak and Rose. Frontiers in Physiology, 2019, 10, 926.	2.8	33
11	Origin of gall-inducing from leaf-mining in Caloptilia micromoths (Lepidoptera, Gracillariidae). Scientific Reports, 2019, 9, 6794.	3.3	23
12	Caterpillars induce jasmonates in flowers and alter plant responses to a second attacker. New Phytologist, 2018, 217, 1279-1291.	7.3	25
13	Modulation of plant cytokinin levels in the <i><scp>W</scp>olbachia</i> â€free leafâ€mining species <i><scp>P</scp>hyllonorycter mespilella</i> . Entomologia Experimentalis Et Applicata, 2018, 166, 428-438.	1.4	8
14	Inside the horn of plenty: Leaf-mining micromoth manipulates its host plant to obtain unending food provisioning. PLoS ONE, 2018, 13, e0209485.	2.5	24
15	Promises and challenges in insect–plant interactions. Entomologia Experimentalis Et Applicata, 2018, 166, 319-343.	1.4	66
16	A host-feeding wasp shares several features of nitrogen management with blood-feeding mosquitoes. Journal of Insect Physiology, 2018, 110, 1-5.	2.0	1
17	Dynamics and origin of cytokinins involved in plant manipulation by a leafâ€mining insect. Insect Science, 2017, 24, 1065-1078.	3.0	26
18	CHASE-Containing Histidine Kinase Receptors in Apple Tree: From a Common Receptor Structure to Divergent Cytokinin Binding Properties and Specific Functions. Frontiers in Plant Science, 2017, 8, 1614.	3.6	27

DAVID GIRON

#	Article	IF	CITATIONS
19	From Plant Exploitation to Mutualism. Advances in Botanical Research, 2017, 81, 55-109.	1.1	5
20	Maternal age affects offspring nutrient dynamics. Journal of Insect Physiology, 2017, 101, 123-131.	2.0	20
21	Editorial. Journal of Insect Physiology, 2016, 84, 1.	2.0	0
22	Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. Journal of Insect Physiology, 2016, 84, 70-89.	2.0	193
23	Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts. Journal of Insect Physiology, 2016, 84, 4-21.	2.0	50
24	Leaf-mining by Phyllonorycter blancardella reprograms the host-leaf transcriptome to modulate phytohormones associated with nutrient mobilization and plant defense. Journal of Insect Physiology, 2016, 84, 114-127.	2.0	44
25	Correlation between the greenâ€island phenotype and <i>Wolbachia</i> infections during the evolutionary diversification of Gracillariidae leafâ€mining moths. Ecology and Evolution, 2015, 5, 4049-4062.	1.9	42
26	Effects of fertilisation on amino acid mobilisation by a plantâ€manipulating insect. Ecological Entomology, 2015, 40, 814-822.	2.2	15
27	Increasing metabolic rate despite declining body weight in an adult parasitoid wasp. Journal of Insect Physiology, 2015, 79, 27-35.	2.0	13
28	Hypermetamorphosis in a leaf-miner allows insects to cope with a confined nutritional space. Arthropod-Plant Interactions, 2015, 9, 75-84.	1.1	18
29	Amino acid composition of the bushcricket spermatophore and the function of courtship feeding: Variable composition suggests a dynamic role of the nuptial gift. Physiology and Behavior, 2015, 151, 463-468.	2.1	10
30	Pivoting from Arabidopsis to wheat to understand how agricultural plants integrate responses to biotic stress. Journal of Experimental Botany, 2015, 66, 513-531.	4.8	35
31	Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms. Journal of Experimental Botany, 2015, 66, 467-478.	4.8	146
32	Cytokinin-Induced Phenotypes in Plant-Insect Interactions: Learning from the Bacterial World. Journal of Chemical Ecology, 2014, 40, 826-835.	1.8	43
33	Leaf-Miners Co-opt Microorganisms to Enhance their Nutritional Environment. Journal of Chemical Ecology, 2013, 39, 969-977.	1.8	71
34	Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence. Functional Ecology, 2013, 27, 599-609.	3.6	178
35	From Income to Capital Breeding: When Diversified Strategies Sustain Species Coexistence. PLoS ONE, 2013, 8, e76086.	2.5	15

Chapitre 20. Manipulation de la plante par les insectes endophytes. , 2013, , 295-302.

0

DAVID GIRON

#	Article	IF	CITATIONS
37	A specialist root herbivore exploits defensive metabolites to locate nutritious tissues. Ecology Letters, 2012, 15, 55-64.	6.4	146
38	Evolution of metabolic rate in a parasitic wasp: The role of limitation in intrinsic resources. Journal of Insect Physiology, 2012, 58, 979-984.	2.0	9
39	A handbook for uncovering the complete energetic budget in insects: the van Handel's method (1985) revisited. Physiological Entomology, 2012, 37, 295-302.	1.5	112
40	A genomically tractable and ecologically relevant model herbivore for a model plant: new insights into the mechanisms of insect–plant interactions and evolution. Molecular Ecology, 2011, 20, 990-994.	3.9	7
41	Association between border cell responses and localized root infection by pathogenic Aphanomyces euteiches. Annals of Botany, 2011, 108, 459-469.	2.9	69
42	Feeding activity pattern in a parasitic wasp when foraging in the field. Ecological Research, 2010, 25, 419-428.	1.5	34
43	Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2311-2319.	2.6	174
44	Ecophysiological attributes of adult overwintering in insects: insights from a field study of the nut weevil, <i>Curculio nucum</i> . Physiological Entomology, 2009, 34, 61-70.	1.5	35
45	Mitigation of egg limitation in parasitoids: immediate hormonal response and enhanced oogenesis after host use. Ecology, 2009, 90, 537-545.	3.2	28
46	Cytokinin-mediated leaf manipulation by a leafminer caterpillar. Biology Letters, 2007, 3, 340-343.	2.3	88
47	Male soldier caste larvae are non-aggressive in the polyembryonic wasp Copidosoma floridanum. Biology Letters, 2007, 3, 431-434.	2.3	19
48	Presence of soldier larvae determines the outcome of competition in a polyembryonic wasp. Journal of Evolutionary Biology, 2007, 20, 165-172.	1.7	31
49	Costs and consequences of superparasitism in the polyembryonic parasitoidCopidosoma koehleri(Hymenoptera: Encyrtidae). Ecological Entomology, 2006, 31, 277-283.	2.2	41
50	LIFETIME NUTRIENT DYNAMICS REVEAL SIMULTANEOUS CAPITAL AND INCOME BREEDING IN A PARASITOID. Ecology, 2005, 86, 545-554.	3.2	119
51	Lifetime gains of host-feeding in a synovigenic parasitic wasp. Physiological Entomology, 2004, 29, 436-442.	1.5	64
52	Host resistance and the evolution of kin recognition in polyembryonic wasps. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S395-8.	2.6	33
53	Aggression by polyembryonic wasp soldiers correlates with kinship but not resource competition. Nature, 2004, 430, 676-679.	27.8	111
54	Lipogenesis in an adult parasitic wasp. Journal of Insect Physiology, 2003, 49, 141-147.	2.0	77

DAVID GIRON

#	Article	IF	CITATIONS
55	Mothers reduce egg provisioning with age. Ecology Letters, 2003, 6, 273-277.	6.4	123
56	The physiology of host feeding in parasitic wasps: implications for survival. Functional Ecology, 2002, 16, 750-757.	3.6	98
57	Lifetime allocation of juvenile and adult nutritional resources to egg production in a holometabolous insect. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1231-1237.	2.6	89