
Carlos Alvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1607739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sticholysins, pore-forming proteins from a marine anemone can induce maturation of dendritic cells through a TLR4 dependent-pathway. Molecular Immunology, 2021, 131, 144-154.	2.2	4
2	Panorama of the Intracellular Molecular Concert Orchestrated by Actinoporins, Pore-Forming Toxins from Sea Anemones. Toxins, 2021, 13, 567.	3.4	4
3	The pore-forming activity of sticholysin I is enhanced by the presence of a phospholipid hydroperoxide in membrane. Toxicon, 2021, 204, 44-55.	1.6	3
4	Purification and Conformational Characterization of a Novel Interleukin-2 Mutein. Protein Journal, 2021, 40, 917-928.	1.6	1
5	Pore-forming toxins from sea anemones: from protein-membrane interaction to its implications for developing biomedical applications. Advances in Biomembranes and Lipid Self-Assembly, 2020, 31, 129-183.	0.6	4
6	Cloning, purification and characterization of nigrelysin, a novel actinoporin from the sea anemone Anthopleura nigrescens. Biochimie, 2019, 156, 206-223.	2.6	5
7	Membrane Remodeling by the Lytic Fragment ofÂSticholysinII: Implications for the Toroidal PoreÂModel. Biophysical Journal, 2019, 117, 1563-1576.	0.5	12
8	Self-association and folding in membrane determine the mode of action of peptides from the lytic segment of sticholysins. Biochimie, 2019, 156, 109-117.	2.6	6
9	Sticholysin II-mediated cytotoxicity involves the activation of regulated intracellular responses that anticipates cell death. Biochimie, 2018, 148, 18-35.	2.6	13
10	The Vacuolar Pathway in Macrophages Plays a Major Role in Antigen Cross-Presentation Induced by the Pore-Forming Protein Sticholysin II Encapsulated Into Liposomes. Frontiers in Immunology, 2018, 9, 2473.	4.8	20
11	Damage of eukaryotic cells by the pore-forming toxin sticholysin II: Consequences of the potassium efflux. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 982-992.	2.6	39
12	Novel Adjuvant Based on the Pore-Forming Protein Sticholysin II Encapsulated into Liposomes Effectively Enhances the Antigen-Specific CTL-Mediated Immune Response. Journal of Immunology, 2017, 198, 2772-2784.	0.8	23
13	Differential binding and activity of the pore-forming toxin sticholysin II in model membranes containing diverse ceramide-derived lipids. Biochimie, 2017, 138, 20-31.	2.6	14
14	Disrupting a key hydrophobic pair in the oligomerization interface of the actinoporins impairs their poreâ€forming activity. Protein Science, 2017, 26, 550-565.	7.6	25
15	Biophysical and biochemical strategies to understand membrane binding and pore formation by sticholysins, pore-forming proteins from a sea anemone. Biophysical Reviews, 2017, 9, 529-544.	3.2	20
16	Panusin represents a new family of \hat{l}^2 -defensin-like peptides in invertebrates. Developmental and Comparative Immunology, 2017, 67, 310-321.	2.3	21
17	Phosphocholine-Specific Antibodies Improve T-Dependent Antibody Responses against OVA Encapsulated into Phosphatidylcholine-Containing Liposomes. Frontiers in Immunology, 2016, 7, 374.	4.8	6
18	Differences in activity of actinoporins are related with the hydrophobicity of their N-terminus. Biochimie, 2015, 116, 70-78.	2.6	31

CARLOS ALVAREZ

#	Article	IF	CITATIONS
19	The Presence of Sterols Favors Sticholysin I-Membrane Association and Pore Formation Regardless of Their Ability to Form Laterally Segregated Domains. Langmuir, 2015, 31, 9911-9923.	3.5	31
20	Role of B-1 cells in the immune response against an antigen encapsulated into phosphatidylcholine-containing liposomes. International Immunology, 2014, 26, 427-437.	4.0	17
21	Sticholysin l–membrane interaction: An interplay between the presence of sphingomyelin and membrane fluidity. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1752-1759.	2.6	40
22	Liposomes of phosphatidylcholine and cholesterol induce an M2-like macrophage phenotype reprogrammable to M1 pattern with the involvement of B-1 cells. Immunobiology, 2014, 219, 403-415.	1.9	11
23	The sticholysin family of pore-forming toxins induces the mixing of lipids in membrane domains. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2757-2762.	2.6	34
24	The membranotropic activity of N-terminal peptides from the pore-forming proteins sticholysin I and II is modulated by hydrophobic and electrostatic interactions as well as lipid composition. Journal of Biosciences, 2011, 36, 781-791.	1.1	21
25	Validation of a mutant of the pore-forming toxin sticholysin-I for the construction of proteinase-activated immunotoxins. Protein Engineering, Design and Selection, 2011, 24, 485-493.	2.1	24
26	Sticholysins, two pore-forming toxins produced by the Caribbean Sea anemone Stichodactyla helianthus: Their interaction with membranes. Toxicon, 2009, 54, 1135-1147.	1.6	100
27	Effect of calcium on the hemolytic activity of Stichodactyla helianthus toxin sticholysin II on human erythrocytes. Toxicon, 2009, 54, 845-850.	1.6	12
28	Effect of sphingomyelin and cholesterol on the interaction of St II with lipidic interfaces. Toxicon, 2007, 49, 68-81.	1.6	58
29	Sticholysins I and II interaction with cationic micelles promotes toxins' conformational changes and enhanced hemolytic activity. Toxicon, 2007, 50, 731-739.	1.6	9
30	Correlations between differences in amino-terminal sequences and different hemolytic activity of sticholysins. Toxicon, 2007, 50, 1201-1204.	1.6	30
31	Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II. Biopolymers, 2006, 84, 169-180.	2.4	52
32	Binding of sea anemone pore-forming toxins sticholysins I and II to interfaces—Modulation of conformation and activity, and lipid–protein interaction. Chemistry and Physics of Lipids, 2003, 122, 97-105.	3.2	38
33	Purification and characterization of two hemolysins from Stichodactyla helianthus. Toxicon, 2001, 39, 187-194.	1.6	123
34	Antiparasite activity of sea-anemone cytolysins onGiardia duodenalis and specific targeting withanti-Giardia antibodies. International Journal for Parasitology, 1999, 29, 489-498.	3.1	53