Byung Hee Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1607722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast and complete recovery of TMDs-decorated rGO fiber gas sensors at room temperature. Applied Surface Science, 2022, 578, 151832.	6.1	18
2	Photothermally Crumpled MoS ₂ Film as an Omnidirectionally Stretchable Platform. Small Methods, 2022, 6, e2200116.	8.6	4
3	Improved hepatoblast differentiation of human pluripotent stem cells by coffee bean derived graphene quantum dots. 2D Materials, 2022, 9, 035012.	4.4	1
4	Grapheneâ€Based Intrinsically Stretchable 2D ontact Electrodes for Highly Efficient Organic Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, .	21.0	22
5	Tailored Graphene Micropatterns by Wafer cale Direct Transfer for Flexible Chemical Sensor Platform. Advanced Materials, 2021, 33, e2004827.	21.0	40
6	Chemical vapour deposition. Nature Reviews Methods Primers, 2021, 1, .	21.2	244
7	Stacking-Specific Reversible Oxidation of Bilayer Graphene. Chemistry of Materials, 2021, 33, 1249-1256.	6.7	4
8	Oral administration of microbiome-friendly graphene quantum dots as therapy for colitis. 2D Materials, 2021, 8, 025036.	4.4	7
9	Stacked graphene with nanoscale wrinkles supports osteogenic differentiation of human adipose-derived stromal cells. 2D Materials, 2021, 8, 025034.	4.4	1
10	Photoresponse of Stacked, Multilayer MoS2 Films Assembled from Solution-Processed MoS2 Flakes. ACS Applied Nano Materials, 2021, 4, 3087-3094.	5.0	0
11	Improved osteogenesis of human adipose-derived stromal cells on hydroxyapatite-mineralized graphene film. 2D Materials, 2021, 8, 035012.	4.4	3
12	Graphene Quantum Dots from Carbonized Coffee Bean Wastes for Biomedical Applications. Nanomaterials, 2021, 11, 1423.	4.1	27
13	Synergistic Molecular Engineering of Holeâ€Injecting Conducting Polymers Overcomes Luminescence Quenching in Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100646.	7.3	14
14	Ultrahigh-strength multi-layer graphene-coated Ni film with interface-induced hardening. Carbon, 2021, 178, 497-505.	10.3	18
15	Performance enhancement of graphene assisted CNT/Cu composites for lightweight electrical cables. Carbon, 2021, 179, 53-59.	10.3	15
16	Photoinitiated Polymerization of Hydrogels by Graphene Quantum Dots. Nanomaterials, 2021, 11, 2169.	4.1	4
17	Effects of Photochemical Oxidation of the Carbonaceous Additives on Li–S Cell Performance. ACS Applied Materials & Interfaces, 2021, 13, 41517-41523.	8.0	3
18	A Multifunctional Tyrosineâ€Immobilized PAH Molecule as a Universal Cathode Interlayer Enables Highâ€Efficiency Inverted Polymer Solar Cells. Advanced Optical Materials, 2021, 9, 2101006.	7.3	2

#	Article	IF	CITATIONS
19	Highly stable Si MOSFET-type humidity sensor with ink-jet printed graphene quantum dots sensing layer. Sensors and Actuators B: Chemical, 2021, 343, 130134.	7.8	13
20	Voltage-dependent gas discrimination using self-activated graphene with Pt decoration. Sensors and Actuators B: Chemical, 2021, 349, 130696.	7.8	2
21	Graphene Quantum Dots Alleviate Impaired Functions in Niemann-Pick Disease Type C in Vivo. Nano Letters, 2021, 21, 2339-2346.	9.1	17
22	Chemically Robust Indium Tin Oxide/Graphene Anode for Efficient Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 9074-9080.	8.0	6
23	Cold nanoparticle-mediated non-covalent functionalization of graphene for field-effect transistors. Nanoscale Advances, 2021, 3, 1404-1412.	4.6	8
24	Structure-controllable growth of nitrogenated graphene quantum dots via solvent catalysis for selective C-N bond activation. Nature Communications, 2021, 12, 5879.	12.8	25
25	Facile Synthesis of N-Doped Graphene Quantum Dots as Novel Transfection Agents for mRNA and pDNA. Nanomaterials, 2021, 11, 2816.	4.1	11
26	A Multifunctional Tyrosineâ€Immobilized PAH Molecule as a Universal Cathode Interlayer Enables Highâ€Efficiency Inverted Polymer Solar Cells (Advanced Optical Materials 21/2021). Advanced Optical Materials, 2021, 9, 2170088.	7.3	0
27	Gradual Edge Contact between Mo and MoS ₂ Formed by Graphene-Masked Sulfurization for High-Performance Field-Effect Transistors. ACS Applied Materials & Interfaces, 2021, 13, 54536-54542.	8.0	4
28	Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy, 2020, 78, 105266.	16.0	74
29	Photocatalytic Degradation of Phenol Using Chemical Vapor Desposition Graphene Column. Catalysts, 2020, 10, 1251.	3.5	0
30	Graphene quantum dots as anti-inflammatory therapy for colitis. Science Advances, 2020, 6, eaaz2630.	10.3	88
31	Layer-Selective Synthesis of MoS ₂ and WS ₂ Structures under Ambient Conditions for Customized Electronics. ACS Nano, 2020, 14, 8485-8494.	14.6	41
32	Structure and properties of graphene. , 2020, , 5-26.		0
33	Confocal laser scanning microscopy as a real-time quality-assessment tool for industrial graphene synthesis. 2D Materials, 2020, 7, 045014.	4.4	4
34	Synthesis of Large-Scale Transition Metal Dichalcogenides for Their Commercialization. Applied Science and Convergence Technology, 2020, 29, 133-142.	0.9	5
35	Degradation Protection of Color Dyes Encapsulated by Graphene Barrier Films. Chemistry of Materials, 2019, 31, 7173-7177.	6.7	10
36	3D graphene-cellulose nanofiber hybrid scaffolds for cortical reconstruction in brain injuries. 2D Materials, 2019, 6, 045043.	4.4	14

#	Article	IF	CITATIONS
37	Defect-engineered MoS ₂ with extended photoluminescence lifetime for high-performance hydrogen evolution. Journal of Materials Chemistry C, 2019, 7, 10173-10178.	5.5	34
38	pH-Triggered Silk Fibroin/Alginate Structures Fabricated in Aqueous Two-Phase System. ACS Biomaterials Science and Engineering, 2019, 5, 5897-5905.	5.2	6
39	Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen. Nanoscale, 2019, 11, 2966-2973.	5.6	46
40	Multifunctional reduced graphene oxide-CVD graphene core–shell fibers. Nanoscale, 2019, 11, 12637-12642.	5.6	22
41	Fieldâ€Effect Transistors: Threshold Voltage Control of Multilayered MoS ₂ Fieldâ€Effect Transistors via Octadecyltrichlorosilane and their Applications to Active Matrixed Quantum Dot Displays Driven by Enhancementâ€Mode Logic Gates (Small 7/2019). Small, 2019, 15, 1970037.	10.0	0
42	Thermal Effects of Microwave Reduced-Graphene-Oxide Coated Polyester Fabric on a Simulated Human Skin in Cool and Neutral Air Temperatures. Fibers and Polymers, 2019, 20, 2611-2617.	2.1	1
43	Threshold Voltage Control of Multilayered MoS ₂ Fieldâ€Effect Transistors via Octadecyltrichlorosilane and their Applications to Active Matrixed Quantum Dot Displays Driven by Enhancementâ€Mode Logic Gates. Small, 2019, 15, e1803852.	10.0	16
44	Ultrastrong Graphene–Copper Core–Shell Wires for High-Performance Electrical Cables. ACS Nano, 2018, 12, 2803-2808.	14.6	52
45	Catalytic degradation of phenols by recyclable CVD graphene films. Nanoscale, 2018, 10, 5840-5844.	5.6	15
46	Tension-controlled single-crystallization of copper foils for roll-to-roll synthesis of high-quality graphene films. 2D Materials, 2018, 5, 024002.	4.4	31
47	Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 4874-4881.	8.0	24
48	Thermoelectric Properties of Thermally Reduced Graphene Oxide Observed by Tuning the Energy States. ACS Sustainable Chemistry and Engineering, 2018, 6, 7468-7474.	6.7	21
49	Roll-to-Roll Laser-Printed Graphene–Graphitic Carbon Electrodes for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 1033-1038.	8.0	29
50	Silicon germanium photo-blocking layers for a-IGZO based industrial display. Scientific Reports, 2018, 8, 17533.	3.3	3
51	Graphene-Enhanced Raman Spectroscopy Reveals the Controlled Photoreduction of Nitroaromatic Compound on Oxidized Graphene Surface. ACS Omega, 2018, 3, 11084-11087.	3.5	6
52	Extremely stable graphene electrodes doped with macromolecular acid. Nature Communications, 2018, 9, 2037.	12.8	96
53	Graphene-Based Nanomaterials. Biological and Medical Physics Series, 2018, , 79-103.	0.4	0
54	Hierarchical carbon–silicon nanowire heterostructures for the hydrogen evolution reaction. Nanoscale, 2018, 10, 13936-13941.	5.6	20

4

#	Article	IF	CITATIONS
55	Enhanced Chemical Reactivity of Graphene by Fermi Level Modulation. Chemistry of Materials, 2018, 30, 5602-5609.	6.7	18
56	Large-scale transfer-free growth of thin graphite films at low temperature for solid diffusion barriers. Nanoscale, 2018, 10, 14819-14823.	5.6	1
57	Graphene quantum dots prevent α-synucleinopathy in Parkinson's disease. Nature Nanotechnology, 2018, 13, 812-818.	31.5	339
58	Double-Layer Graphene Outperforming Monolayer as Catalyst on Silicon Photocathode for Hydrogen Production. ACS Applied Materials & Interfaces, 2017, 9, 3570-3580.	8.0	20
59	High-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films. 2D Materials, 2017, 4, 025003.	4.4	36
60	Continuous Films of Selfâ€Assembled Graphene Quantum Dots for nâ€Type Doping of Graphene by UVâ€Triggered Charge Transfer. Small, 2017, 13, 1603142.	10.0	10
61	Smart Contact Lenses with Graphene Coating for Electromagnetic Interference Shielding and Dehydration Protection. ACS Nano, 2017, 11, 5318-5324.	14.6	202
62	Efficient heat generation in large-area graphene films by electromagnetic wave absorption. 2D Materials, 2017, 4, 025037.	4.4	23
63	Mapping of Bernal and non-Bernal stacking domains in bilayer graphene using infrared nanoscopy. Nanoscale, 2017, 9, 4191-4195.	5.6	15
64	High-Density Single-Layer Coating of Gold Nanoparticles onto Multiple Substrates by Using an Intrinsically Disordered Protein of α-Synuclein for Nanoapplications. ACS Applied Materials & Interfaces, 2017, 9, 8519-8532.	8.0	8
65	Multiscale Modulation of Nanocrystalline Cellulose Hydrogel via Nanocarbon Hybridization for 3D Neuronal Bilayer Formation. Small, 2017, 13, 1700331.	10.0	24
66	Multifunctional graphene oxide for bioimaging: emphasis on biological research. European Journal of Nanomedicine, 2017, 9, .	0.6	8
67	Facile one-pot photosynthesis of stable Ag@graphene oxide nanocolloid core@shell nanoparticles with sustainable localized surface plasmon resonance properties. Journal of Materials Chemistry C, 2017, 5, 10016-10022.	5.5	12
68	Chemically fluorinated graphene oxide for room temperature ammonia detection at ppb levels. Journal of Materials Chemistry A, 2017, 5, 19116-19125.	10.3	83
69	Non-destructive electron microscopy imaging and analysis of biological samples with graphene coating. 2D Materials, 2016, 3, 045004.	4.4	32
70	Graphene quantum dots: structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulfur batteries. NPG Asia Materials, 2016, 8, e272-e272.	7.9	105
71	Graphene quantum dots-decorated ZnS nanobelts with highly efficient photocatalytic performances. RSC Advances, 2016, 6, 24115-24120.	3.6	56
72	Controlling the ripple density and heights: a new way to improve the electrical performance of CVD-grown graphene. Nanoscale, 2016, 8, 9822-9827.	5.6	19

#	Article	IF	CITATIONS
73	Distortion in Two-Dimensional Shapes of Merging Nanobubbles: Evidence for Anisotropic Gas Flow Mechanism. Langmuir, 2016, 32, 11303-11308.	3.5	17
74	Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals. Scientific Reports, 2016, 6, 20904.	3.3	222
75	Strain Relaxation of Graphene Layers by Cu Surface Roughening. Nano Letters, 2016, 16, 5993-5998.	9.1	59
76	Strong hole-doping and robust resistance-decrease in proton-irradiated graphene. Scientific Reports, 2016, 6, 21311.	3.3	7
77	Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor. Nature Communications, 2016, 7, 13261.	12.8	136
78	Nanoscale Direct Mapping of Noise Source Activities on Graphene Domains. ACS Nano, 2016, 10, 10135-10142.	14.6	20
79	Engineering structures and functions of mesenchymal stem cells by suspended large-area graphene nanopatterns. 2D Materials, 2016, 3, 035013.	4.4	15
80	Graphene-catalyzed photoreduction of dye molecules revealed by graphene enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 3413-3415.	2.8	5
81	Enhancement of electrochemical properties by polysulfide trapping in a graphene-coated sulfur cathode on patterned current collector. Chemical Communications, 2016, 52, 3203-3206.	4.1	15
82	Structural evolution of graphene in air at the electrical breakdown limit. Carbon, 2016, 99, 466-471.	10.3	11
83	Roll-to-roll synthesis and patterning of graphene and 2D materials. , 2015, , .		1
84	Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics. Scientific Reports, 2015, 5, 14276.	3.3	56
85	High-performance ultraviolet photodetectors based on solution-grown ZnS nanobelts sandwiched between graphene layers. Scientific Reports, 2015, 5, 12345.	3.3	62
86	Fluorinated CYTOP passivation effects on the electrical reliability of multilayer MoS ₂ field-effect transistors. Nanotechnology, 2015, 26, 455201.	2.6	46
87	Graphene-based nanomaterials for versatile imaging studies. Chemical Society Reviews, 2015, 44, 4835-4852.	38.1	176
88	In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials, 2015, 58, 93-102.	11.4	82
89	Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-Effect Transistors. ACS Nano, 2015, 9, 5818-5824.	14.6	93
90	Engineering electrical properties of graphene: chemical approaches. 2D Materials, 2015, 2, 042001.	4.4	46

#	Article	IF	CITATIONS
91	Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells. Nature Communications, 2015, 6, 6068.	12.8	136
92	N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production. Energy and Environmental Science, 2015, 8, 1329-1338.	30.8	136
93	An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters. Nanoscale, 2015, 7, 6567-6573.	5.6	130
94	A Facile Route for Patterned Growth of Metal–Insulator Carbon Lateral Junction through One-Pot Synthesis. ACS Nano, 2015, 9, 8352-8360.	14.6	8
95	Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes. Scientific Reports, 2015, 5, 11032.	3.3	54
96	An electrochemical approach to graphene oxide coated sulfur for long cycle life. Nanoscale, 2015, 7, 13249-13255.	5.6	20
97	Graphene Oxide Flakes as a Cellular Adhesive: Prevention of Reactive Oxygen Species Mediated Death of Implanted Cells for Cardiac Repair. ACS Nano, 2015, 9, 4987-4999.	14.6	203
98	Active control of all-fibre graphene devices with electrical gating. Nature Communications, 2015, 6, 6851.	12.8	159
99	Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials. Annual Review of Materials Research, 2015, 45, 63-84.	9.3	341
100	Roll-to-roll continuous patterning and transfer of graphene via dispersive adhesion. Nanoscale, 2015, 7, 7138-7142.	5.6	33
101	Graphene Potentiates the Myocardial Repair Efficacy of Mesenchymal Stem Cells by Stimulating the Expression of Angiogenic Growth Factors and Gap Junction Protein. Advanced Functional Materials, 2015, 25, 2590-2600.	14.9	114
102	Ultraclean Patterned Transfer of Single-Layer Graphene by Recyclable Pressure Sensitive Adhesive Films. Nano Letters, 2015, 15, 3236-3240.	9.1	101
103	Strain-Assisted Wafer-Scale Nanoperforation of Single-Layer Graphene by Arrayed Pt Nanoparticles. Chemistry of Materials, 2015, 27, 7003-7010.	6.7	13
104	Monolayer Graphene-Directed Growth and Neuronal Differentiation of Mesenchymal Stem Cells. Journal of Biomedical Nanotechnology, 2015, 11, 2024-2033.	1.1	54
105	Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending. ACS Nano, 2015, 9, 10453-10460.	14.6	277
106	Controlled growth of a graphene charge-floating gate for organic non-volatile memory transistors. Organic Electronics, 2015, 27, 227-231.	2.6	12
107	Stable n-type doping of graphene via high-molecular-weight ethylene amines. Physical Chemistry Chemical Physics, 2015, 17, 29492-29495.	2.8	40
108	Covalent conjugation of mechanically stiff graphene oxide flakes to three-dimensional collagen scaffolds for osteogenic differentiation of human mesenchymal stem cells. Carbon, 2015, 83, 162-172.	10.3	110

#	Article	IF	CITATIONS
109	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	5.6	2,452
110	Carbon nanostructure-based saturable absorber mirror for a diode-pumped 500-MHz femtosecond Yb:KLu(WO_4)_2 laser. Optics Express, 2014, 22, 15626.	3.4	14
111	Graphene oxide catalyzed cis-trans isomerization of azobenzene. APL Materials, 2014, 2, .	5.1	7
112	Efficient solution-processed small-molecule solar cells by insertion of graphene quantum dots. Nanoscale, 2014, 6, 15175-15180.	5.6	30
113	<i>Inâ€situ</i> Raman spectroscopy of currentâ€carrying graphene microbridge. Journal of Raman Spectroscopy, 2014, 45, 168-172.	2.5	11
114	Infrared spectroscopy of large scale single layer graphene on self assembled organic monolayer. Applied Physics Letters, 2014, 104, 041904.	3.3	6
115	All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber. Laser Physics Letters, 2014, 11, 015101.	1.4	58
116	Graphene‒Regulated Cardiomyogenic Differentiation Process of Mesenchymal Stem Cells by Enhancing the Expression of Extracellular Matrix Proteins and Cell Signaling Molecules. Advanced Healthcare Materials, 2014, 3, 176-181.	7.6	133
117	Simultaneous Etching and Doping by Cu-Stabilizing Agent for High-Performance Graphene-Based Transparent Electrodes. Chemistry of Materials, 2014, 26, 2332-2336.	6.7	40
118	Oneâ€ s tep Synthesis of Nâ€doped Graphene Quantum Sheets from Monolayer Graphene by Nitrogen Plasma. Advanced Materials, 2014, 26, 3501-3505.	21.0	109
119	Length-dependent thermal conductivity in suspended single-layer graphene. Nature Communications, 2014, 5, 3689.	12.8	735
120	Highly uniform growth of monolayer graphene by chemical vapor deposition on Cu–Ag alloy catalysts. Physical Chemistry Chemical Physics, 2014, 16, 3087.	2.8	21
121	Fast Synthesis of High-Performance Graphene Films by Hydrogen-Free Rapid Thermal Chemical Vapor Deposition. ACS Nano, 2014, 8, 950-956.	14.6	195
122	Vapor-Phase Molecular Doping of Graphene for High-Performance Transparent Electrodes. ACS Nano, 2014, 8, 868-874.	14.6	86
123	Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells. Biochemical and Biophysical Research Communications, 2014, 452, 174-180.	2.1	97
124	Selective catalytic burning of graphene by SiOxlayer depletion. Nanoscale, 2014, 6, 1474-1479.	5.6	3
125	Graphene-induced unusual microstructural evolution in Ag plated Cu foils. Nanoscale, 2014, 6, 7209.	5.6	3
126	A highly conducting graphene film with dual-side molecular n-doping. Nanoscale, 2014, 6, 9545-9549.	5.6	27

8

#	Article	IF	CITATIONS
127	Laser-Induced Solid-Phase Doped Graphene. ACS Nano, 2014, 8, 7671-7677.	14.6	48
128	Graphene for displays that bend. Nature Nanotechnology, 2014, 9, 737-738.	31.5	150
129	Fabrication and Electrical Characterization of Graphene Formed Chemically on Nickel Nano Electro Mechanical System (NEMS) Switch. Journal of Nanoscience and Nanotechnology, 2014, 14, 9418-9424.	0.9	2
130	High-performance polymer light emitting diodes with interface-engineered graphene anodes. Organic Electronics, 2013, 14, 2324-2330.	2.6	29
131	Balancing Light Absorptivity and Carrier Conductivity of Graphene Quantum Dots for High-Efficiency Bulk Heterojunction Solar Cells. ACS Nano, 2013, 7, 7207-7212.	14.6	171
132	Transferable Graphene Oxide by Stamping Nanotechnology: Electronâ€Transport Layer for Efficient Bulkâ€Heterojunction Solar Cells. Angewandte Chemie - International Edition, 2013, 52, 2874-2880.	13.8	112
133	Efficient n-doping of graphene films by APPE (aminophenyl propargyl ether): a substituent effect. Physical Chemistry Chemical Physics, 2013, 15, 18353.	2.8	10
134	N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. Energy and Environmental Science, 2013, 6, 3658.	30.8	134
135	Self-organizing properties of triethylsilylethynyl-anthradithiophene on monolayer graphene electrodes in solution-processed transistors. Nanoscale, 2013, 5, 11094.	5.6	24
136	Biomedical Applications of Graphene and Graphene Oxide. Accounts of Chemical Research, 2013, 46, 2211-2224.	15.6	1,420
137	Thermal stability of metal Ohmic contacts in indium gallium zinc oxide transistors using a graphene barrier layer. Applied Physics Letters, 2013, 102, .	3.3	30
138	Prospects and Challenges of Graphene in Biomedical Applications. Advanced Materials, 2013, 25, 2258-2268.	21.0	573
139	Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B, 2013, 1, 933.	5.8	144
140	Optical Probing of the Electronic Interaction between Graphene and Hexagonal Boron Nitride. ACS Nano, 2013, 7, 1533-1541.	14.6	53
141	Tuning Molecular Selfâ€Assembly Toward Intriguing Nanomaterial Architectures. Chemistry - A European Journal, 2013, 19, 9118-9122.	3.3	3
142	A transparent and stretchable graphene-based actuator for tactile display. Nanotechnology, 2013, 24, 145501.	2.6	70
143	Bacterial Cellulose Nanofibrillar Patch as a Wound Healing Platform of Tympanic Membrane Perforation. Advanced Healthcare Materials, 2013, 2, 1525-1531.	7.6	59
144	Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber. Optics Letters, 2013, 38, 1745.	3.3	54

#	Article	IF	CITATIONS
145	Graphene nanonet for biological sensing applications. Nanotechnology, 2013, 24, 375302.	2.6	7
146	Low-temperature growth and direct transfer of graphene–graphitic carbon films on flexible plastic substrates. Nanotechnology, 2012, 23, 344016.	2.6	28
147	Infrared Conductivity and Carrier Mobility of Large Scale Graphene on Various Substrates. Journal of Nanoscience and Nanotechnology, 2012, 12, 5816-5819.	0.9	2
148	Monolayer graphene mode-locked 63-fs Ti:sapphire laser. , 2012, , .		0
149	A Novel Method for Large Area Graphene Transfer on the Polymer Optical Fiber. Journal of Nanoscience and Nanotechnology, 2012, 12, 3918-3921.	0.9	3
150	Graphene mode-locked femtosecond Yb:KLuW laser. Applied Physics Letters, 2012, 101, .	3.3	39
151	Quasi-Periodic Nanoripples in Graphene Grown by Chemical Vapor Deposition and Its Impact on Charge Transport. ACS Nano, 2012, 6, 1158-1164.	14.6	129
152	How to optically count graphene layers. Optics Letters, 2012, 37, 3765.	3.3	25
153	Efficient Mode-Locking of Sub-70-fs Ti:Sapphire Laser by Graphene Saturable Absorber. Applied Physics Express, 2012, 5, 032701.	2.4	140
154	Large-area graphene synthesis and its application to interface-engineered field effect transistors. Solid State Communications, 2012, 152, 1350-1358.	1.9	26
155	Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots: Interplay between Size and Shape. ACS Nano, 2012, 6, 8203-8208.	14.6	563
156	Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photonics, 2012, 6, 105-110.	31.4	1,272
157	All Graphene-Based Thin Film Transistors on Flexible Plastic Substrates. Nano Letters, 2012, 12, 3472-3476.	9.1	225
158	Graphene transfer: key for applications. Nanoscale, 2012, 4, 5527.	5.6	405
159	Graphene–nanowire hybrid structures for high-performance photoconductive devices. Journal of Materials Chemistry, 2012, 22, 8372.	6.7	47
160	Solution processed polymer light-emitting diodes with single layer graphene anode. , 2012, , .		2
161	Effect of uni-axial strain on THz/far-infrared response of graphene. Applied Physics Letters, 2012, 100, .	3.3	8
162	Towards industrial applications of graphene electrodes. Physica Scripta, 2012, T146, 014024.	2.5	131

#	Article	IF	CITATIONS
163	Mechanical and Environmental Stability of Polymer Thin-Film-Coated Graphene. ACS Nano, 2012, 6, 2096-2103.	14.6	61
164	High openâ€circuit voltage of grapheneâ€based photovoltaic cells modulated by layerâ€byâ€layer transfer. Surface and Interface Analysis, 2012, 44, 744-748.	1.8	1
165	Graphene–Ferroelectric Hybrid Structure for Flexible Transparent Electrodes. ACS Nano, 2012, 6, 3935-3942.	14.6	167
166	Efficient Transfer of Large-Area Graphene Films onto Rigid Substrates by Hot Pressing. ACS Nano, 2012, 6, 5360-5365.	14.6	172
167	Photoresistivity and optical switching of graphene with DNA lattices. Current Applied Physics, 2012, 12, 623-627.	2.4	4
168	Atomic layer etching of graphene for full graphene device fabrication. Carbon, 2012, 50, 429-435.	10.3	80
169	Singleâ€Gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping. Advanced Materials, 2012, 24, 407-411.	21.0	228
170	Surface-Directed Molecular Assembly of Pentacene on Monolayer Graphene for High-Performance Organic Transistors. Journal of the American Chemical Society, 2011, 133, 4447-4454.	13.7	309
171	Optical response of large scale single layer graphene. Applied Physics Letters, 2011, 98, .	3.3	87
172	Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes. Nano Letters, 2011, 11, 4642-4646.	9.1	351
173	UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering. ACS Nano, 2011, 5, 9799-9806.	14.6	350
174	Wafer-scale graphene/ferroelectric hybrid devices for low-voltage electronics. Europhysics Letters, 2011, 93, 17002.	2.0	74
175	Far-infrared study of substrate-effect on large scale graphene. Applied Physics Letters, 2011, 98, .	3.3	58
176	Toward Wafer Scale Fabrication of Graphene Based Spin Valve Devices. Nano Letters, 2011, 11, 2363-2368.	9.1	214
177	Selective n-Type Doping of Graphene by Photo-patterned Gold Nanoparticles. ACS Nano, 2011, 5, 3639-3644.	14.6	85
178	Graphene-Based Bimorph Microactuators. Nano Letters, 2011, 11, 977-981.	9.1	159
179	Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors. Journal of Physical Chemistry Letters, 2011, 2, 841-845.	4.6	237
180	High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 125 μm. Optics Letters, 2011, 36, 4089.	3.3	128

#	Article	IF	CITATIONS
181	High-Performance Graphene-Based Transparent Flexible Heaters. Nano Letters, 2011, 11, 5154-5158.	9.1	457
182	Synthesis of Graphene Films by Chemical Vapor Deposition for Transparent Conducting Electrodes of GaN Light-Emitting Diodes. , 2011, , .		0
183	Synthesis of Ultra-Long Super-Aligned Double-Walled Carbon Nanotube Forests. Journal of Nanoscience and Nanotechnology, 2011, 11, 470-473.	0.9	14
184	Graphene for Controlled and Accelerated Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACS Nano, 2011, 5, 4670-4678.	14.6	819
185	Transparent Flexible Organic Transistors Based on Monolayer Graphene Electrodes on Plastic. Advanced Materials, 2011, 23, 1752-1756.	21.0	189
186	Control of Graphene Fieldâ€Effect Transistors by Interfacial Hydrophobic Selfâ€Assembled Monolayers. Advanced Materials, 2011, 23, 3460-3464.	21.0	138
187	Enhanced Differentiation of Human Neural Stem Cells into Neurons on Graphene. Advanced Materials, 2011, 23, H263-7.	21.0	626
188	Flexible Inorganic Nanostructure Lightâ€Emitting Diodes Fabricated on Graphene Films. Advanced Materials, 2011, 23, 4614-4619.	21.0	210
189	Ultrafast modulation of optical transitions in monolayer and multilayer graphene. Carbon, 2011, 49, 4781-4785.	10.3	27
190	Synthesis and applications of graphene for flexible electronics. , 2011, , .		6
191	Detection of Acetone Vapor Using Graphene on Polymer Optical Fiber. Journal of Nanoscience and Nanotechnology, 2011, 11, 5939-5943.	0.9	48
192	Transparent active skin. , 2011, , .		1
193	Electrochemical Synthesis of CdSe Quantumâ€Dot Arrays on a Graphene Basal Plane Using Mesoporous Silica Thinâ€Film Templates. Advanced Materials, 2010, 22, 515-518.	21.0	137
194	Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5, 574-578.	31.5	7,294
195	High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics. Nano Letters, 2010, 10, 3464-3466.	9.1	390
196	Plasmon-Enhanced Ultraviolet Photoluminescence from Hybrid Structures of Graphene/ZnO Films. Physical Review Letters, 2010, 105, 127403.	7.8	127
197	Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell. Applied Physics Letters, 2010, 97, .	3.3	70
198	Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Letters, 2010, 10, 490-493.	9.1	1,062

#	Article	IF	CITATIONS
199	Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology, 2010, 21, 175201.	2.6	259
200	Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology, 2010, 21, 425201.	2.6	70
201	Graphene as ion sensitive film for ionic liquids. , 2010, , .		0
202	Monolayer graphene saturable absorber for bulk laser mode-locking. , 2010, , .		5
203	Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457, 706-710.	27.8	9,624
204	Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature, 2009, 460, 498-501.	27.8	338
205	Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes. Physical Review Letters, 2007, 98, 186808.	7.8	285
206	Covalently Bridging Gaps in Single-Walled Carbon Nanotubes with Conducting Molecules. Science, 2006, 311, 356-359.	12.6	438
207	Interactions of Neutral and Cationic Transition Metals with the Redox System of Hydroquinone and Quinone: Theoretical Characterization of the Binding Topologies, and Implications for the Formation of Nanomaterials. Chemistry - A European Journal, 2006, 12, 4885-4892.	3.3	26
208	Extracting subnanometer single shells from ultralong multiwalled carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14155-14158.	7.1	64
209	Quasi-Continuous Growth of Ultralong Carbon Nanotube Arrays. Journal of the American Chemical Society, 2005, 127, 15336-15337.	13.7	131
210	Substituent Effects on the Edge-to-Face Aromatic Interactions. Journal of the American Chemical Society, 2005, 127, 4530-4537.	13.7	190
211	Size Control of Semimetal Bismuth Nanoparticles and the UVâ~'Visible and IR Absorption Spectra. Journal of Physical Chemistry B, 2005, 109, 7067-7072.	2.6	117
212	Antimony Nanowires Self-Assembled from Sb Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 16723-16726.	2.6	46
213	Mechanistic Study on Electrochemical Reduction of Calix[4]quinone in Acetonitrile Containing Water§. Journal of Physical Chemistry B, 2004, 108, 4927-4936.	2.6	12
214	Protein Quality of Wheat Desirable for Making Fresh White Salted Noodles and Its Influences on Processing and Texture of Noodles. Cereal Chemistry, 2003, 80, 297-303.	2.2	83
215	Assembling Phenomena of Calix[4]hydroquinone Nanotube Bundles by One-Dimensional Short Hydrogen Bonding and Displaced Ï€â^'Ï€ Stacking. Journal of the American Chemical Society, 2002, 124, 14268-14279.	13.7	106
216	An Electrochemically Controllable Nanomechanical Molecular System Utilizing Edge-to-Face and Face-to-Face Aromatic Interactions. Organic Letters, 2002, 4, 3971-3974.	4.6	56

#	Article	IF	CITATIONS
217	Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase. Science, 2001, 294, 348-351.	12.6	644
218	Self-Assembled Arrays of Organic Nanotubes with Infinitely Long One-Dimensional H-Bond Chains. Journal of the American Chemical Society, 2001, 123, 10748-10749.	13.7	248
219	A New Type of Helix Pattern in Polyalanine Peptide. Journal of the American Chemical Society, 2001, 123, 514-515.	13.7	26
220	Theoretical Study of the Conformations and Strain Energies of [n,n]Metaparacyclophanes:Â Indication of Stable Edge-to-Face and Displaced Face-to-Face Conformers forn= 4. Journal of Organic Chemistry, 1999, 64, 5661-5665.	3.2	35