## Stephanie Bernard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1607643/publications.pdf Version: 2024-02-01



STEDHANIE REDNADD

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | GWAS identifies genetic loci underlying nitrogen responsiveness in the climate resilient C4 model<br>Setaria italica (L.). Journal of Advanced Research, 2022, 42, 249-261.                | 9.5 | 6         |
| 2  | Over-expression of TaDWF4 increases wheat productivity under low and sufficient nitrogen through enhanced carbon assimilation. Communications Biology, 2022, 5, 193.                       | 4.4 | 5         |
| 3  | Trade-offs in the genetic control of functional and nutritional quality traits in UK winter wheat.<br>Heredity, 2022, 128, 420-433.                                                        | 2.6 | 13        |
| 4  | Defining the physiological determinants of low nitrogen requirement in wheat. Biochemical Society<br>Transactions, 2021, 49, 609-616.                                                      | 3.4 | 9         |
| 5  | Phytohormones Interplay: Karrikin Signalling Promotes Ethylene Synthesis to Modulate Roots. Trends<br>in Plant Science, 2021, 26, 308-311.                                                 | 8.8 | 8         |
| 6  | Variation for Nitrogen Use Efficiency Traits in Wheat Under Contrasting Nitrogen Treatments in South-Eastern Europe. Frontiers in Plant Science, 2021, 12, 682333.                         | 3.6 | 14        |
| 7  | Phosphate Deprivation Can Impair Mechano-Stimulated Cytosolic Free Calcium Elevation in Arabidopsis<br>Roots. Plants, 2020, 9, 1205.                                                       | 3.5 | 3         |
| 8  | Common Components of the Strigolactone and Karrikin Signaling Pathways Suppress Root Branching<br>in Arabidopsis. Plant Physiology, 2020, 184, 18-22.                                      | 4.8 | 19        |
| 9  | A Roadmap for Lowering Crop Nitrogen Requirement. Trends in Plant Science, 2019, 24, 892-904.                                                                                              | 8.8 | 89        |
| 10 | Impairment in karrikin but not strigolactone sensing enhances root skewing in <i>Arabidopsis<br/>thaliana</i> . Plant Journal, 2019, 98, 607-621.                                          | 5.7 | 69        |
| 11 | Phosphate Starvation Alters Abiotic-Stress-Induced Cytosolic Free Calcium Increases in Roots. Plant Physiology, 2019, 179, 1754-1767.                                                      | 4.8 | 43        |
| 12 | Wheat root length and not branching is altered in the presence of neighbours, including blackgrass.<br>PLoS ONE, 2017, 12, e0178176.                                                       | 2.5 | 7         |
| 13 | Calcium-Mediated Abiotic Stress Signaling in Roots. Frontiers in Plant Science, 2016, 7, 1296.                                                                                             | 3.6 | 151       |
| 14 | Annexin 1 regulates the <scp>H</scp> <sub>2</sub> <scp>O</scp> <sub>2</sub> â€induced calcium signature in <i><scp>A</scp>rabidopsis thaliana</i> roots. Plant Journal, 2014, 77, 136-145. | 5.7 | 109       |
| 15 | Salinity-Induced Calcium Signaling and Root Adaptation in Arabidopsis Require the Calcium Regulatory<br>Protein Annexin1 Â Â. Plant Physiology, 2013, 163, 253-262.                        | 4.8 | 132       |
| 16 | Annual grassland resource pools and fluxes: sensitivity to precipitation and dry periods on two contrasting soils. Ecosphere, 2012, 3, art70-art70.                                        | 2.2 | 5         |
| 17 | Gene expression profiling: opening the black box of plant ecosystem responses to global change.<br>Global Change Biology, 2009, 15, 1201-1213.                                             | 9.5 | 35        |
| 18 | The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theoretical and Applied Genetics, 2007, 114, 403-419.                                               | 3.6 | 215       |

| #  | Article                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence. FEBS Letters, 2006, 580, 1269-1276. | 2.8 | 60        |
| 20 | The roles of redox processes in pea nodule development and senescence. Plant, Cell and Environment, 2005, 28, 1293-1304.                         | 5.7 | 58        |