Gabriel S Longo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1606595/publications.pdf Version: 2024-02-01

CARDIEL SLONCO

#	Article	IF	CITATIONS
1	Molecular Theory of Weak Polyelectrolyte Gels: The Role of pH and Salt Concentration. Macromolecules, 2011, 44, 147-158.	4.8	125
2	Ligandâ^'Receptor Interactions in Tethered Polymer Layers. Langmuir, 2005, 21, 11342-11351.	3.5	56
3	Molecular theory of weak polyelectrolyte thin films. Soft Matter, 2012, 8, 1344-1354.	2.7	51
4	Pushing the Boundaries of Interfacial Sensitivity in Graphene FET Sensors: Polyelectrolyte Multilayers Strongly Increase the Debye Screening Length. Journal of Physical Chemistry C, 2018, 122, 10181-10188.	3.1	51
5	Thermally-induced softening of PNIPAm-based nanopillar arrays. Soft Matter, 2017, 13, 2453-2464.	2.7	43
6	pH-Controlled Nanoaggregation in Amphiphilic Polymer Co-networks. ACS Nano, 2013, 7, 2693-2704.	14.6	31
7	Role of micellar interface in the synthesis of chitosan nanoparticles formulated by reverse micellar method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124876.	4.7	30
8	New insight into the electrochemical desorption of alkanethiol SAMs on gold. Physical Chemistry Chemical Physics, 2012, 14, 12355.	2.8	29
9	Non-monotonic swelling of surface grafted hydrogels induced by pH and/or salt concentration. Journal of Chemical Physics, 2014, 141, 124909.	3.0	29
10	Ligandâ^'Receptor Interactions between Surfaces: The Role of Binary Polymer Spacers. Langmuir, 2008, 24, 10324-10333.	3.5	28
11	Unusual temperature-induced swelling of ionizable poly(N-isopropylacrylamide)-based microgels: experimental and theoretical insights into its molecular origin. Soft Matter, 2015, 11, 8879-8886.	2.7	28
12	Behavior of ligand binding assays with crowded surfaces: Molecular model of antigen capture by antibody-conjugated nanoparticles. PLoS ONE, 2017, 12, e0185518.	2.5	28
13	Stability and Liquid-Liquid Phase Separation in Mixed Saturated Lipid Bilayers. Biophysical Journal, 2009, 96, 3977-3986.	0.5	26
14	How protonation modulates the interaction between proteins and pH-responsive hydrogel films. Current Opinion in Colloid and Interface Science, 2019, 41, 27-39.	7.4	26
15	Lysozyme adsorption in pH-responsive hydrogel thin-films: the non-trivial role of acid–base equilibrium. Soft Matter, 2015, 11, 6669-6679.	2.7	25
16	Calculating Partition Coefficients of Chain Anchors in Liquid-Ordered and Liquid-Disordered Phases. Biophysical Journal, 2010, 98, 1883-1892.	0.5	24
17	Adsorption and protonation of peptides and proteins in pH responsive gels. Journal Physics D: Applied Physics, 2016, 49, 323001.	2.8	22
18	Stability and Phase Separation in Mixed Monopolar Lipid/Bolalipid Layers. Biophysical Journal, 2007, 93, 2609-2621.	0.5	21

GABRIEL S LONGO

#	Article	IF	CITATIONS
19	Phase Separation in Binary Mixtures of Bipolar and Monopolar Lipid Dispersions Revealed by 2H NMR Spectroscopy, Small Angle X-Ray Scattering, and Molecular Theory. Biophysical Journal, 2009, 97, 2700-2709.	0.5	20
20	Controlling swelling/deswelling of stimuli-responsive hydrogel nanofilms in electric fields. Soft Matter, 2016, 12, 8359-8366.	2.7	20
21	Use of pH Gradients in Responsive Polymer Hydrogels for the Separation and Localization of Proteins from Binary Mixtures. Macromolecules, 2018, 51, 8205-8216.	4.8	20
22	A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly(<i>N</i> -isopropylacrylamide- <i>co</i> -methacrylic acid) microgels. Soft Matter, 2020, 16, 881-890.	2.7	16
23	Nanoparticles modified with cell penetrating peptides: Assessing adsorption on membranes containing acidic lipids. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111373.	5.0	15
24	A Molecular Dynamics Study of the Role of Adatoms in SAMs of Methylthiolate on Au(111): A New Force Field Parameterized from Ab Initio Calculations. Journal of Physical Chemistry C, 2012, 116, 14883-14891.	3.1	14
25	Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms. Langmuir, 2014, 30, 15335-15344.	3.5	14
26	Adsorption and insertion of polyarginine peptides into membrane pores: The trade-off between electrostatics, acid-base chemistry and pore formation energy. Journal of Colloid and Interface Science, 2019, 552, 701-711.	9.4	12
27	Stability and phase separation in mixed self-assembled monolayers. Journal of Chemical Physics, 2006, 125, 074708.	3.0	11
28	Thermodynamic Theory of Multiresponsive Microgel Swelling. Macromolecules, 2021, 54, 2936-2947.	4.8	10
29	Mesoporous thin films on graphene FETs: nanofiltered, amplified and extended field-effect sensing. Nanoscale, 2021, 13, 19098-19108.	5.6	9
30	Mechanism for electric charge separation by ejection of charged particles from an ice particle growing by riming. Atmospheric Research, 2003, 69, 99-108.	4.1	8
31	Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding. Physical Chemistry Chemical Physics, 2020, 22, 23399-23410.	2.8	8
32	Using Polymer Hydrogels for Glyphosate Sequestration from Aqueous Solutions: Molecular Theory Study of Adsorption to Polyallylamine Films. Langmuir, 2018, 34, 12560-12568.	3.5	7
33	Molecular theory of glyphosate adsorption to pH-responsive polymer layers. Adsorption, 2019, 25, 1307-1316.	3.0	6
34	Triggering doxorubicin release from responsive hydrogel films by polyamine uptake. Soft Matter, 2020, 16, 7492-7502.	2.7	6
35	Voltage-Induced Adsorption of Cationic Nanoparticles on Lipid Membranes. Journal of Physical Chemistry B, 2022, 126, 2230-2240.	2.6	4
36	Competitive Protein Adsorption on Charge Regulating Silica-Like Surfaces: The Role of Protonation Equilibrium. Journal of Physics Condensed Matter, 2022, , .	1.8	1

#	Article	IF	CITATIONS
37	An example of theoretical approaches in polymer hydrogels: insights into the behavior of pH-responsive nanofilms. , 2020, , 229-256.		0