List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1606390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toolbox for Distal C–H Bond Functionalizations in Organic Molecules. Chemical Reviews, 2022, 122, 5682-5841.	47.7	237
2	Recent Developments in Hydrodecyanation and Decyanative Functionalization Reactions. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	8
3	Trifluoroethanol as a Unique Additive for the Chemoselective Electrooxidation of Enamines to Access Unsymmetrically Substituted NHâ€Pyrroles. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
4	Trifluoroethanol as a Unique Additive for the Chemoselective Electrooxidation of Enamines to Access Unsymmetrically Substituted NHâ€Pyrroles. Angewandte Chemie, 2022, 134, .	2.0	2
5	Sustainable C–H functionalization under ball-milling, microwave-irradiation and aqueous media. Green Chemistry, 2022, 24, 2296-2320.	9.0	20
6	Pd-catalysed C–H functionalisation of free carboxylic acids. Chemical Science, 2022, 13, 2551-2573.	7.4	26
7	Catalytic Câ^'H Activation <i>via</i> Fourâ€Membered Metallacycle Intermediate. Helvetica Chimica Acta, 2022, 105, .	1.6	1
8	Emergence of Pyrimidine-Based <i>meta</i> -Directing Group: Journey from Weak to Strong Coordination in Diversifying <i>meta</i> -C–H Functionalization. Accounts of Chemical Research, 2022, 55, 354-372.	15.6	41
9	Photoinduced Regioselective Olefination of Arenes at Proximal and Distal Sites. Journal of the American Chemical Society, 2022, 144, 1929-1940.	13.7	54
10	Group 6 transition metal-based molecular complexes for sustainable catalytic CO ₂ activation. Catalysis Science and Technology, 2022, 12, 390-408.	4.1	8
11	Strategies to transform remote C(sp3)-H bonds of amino acid derivatives. , 2022, 1, 100005.		18
12	Eneâ€Reductase: A Multifaceted Biocatalyst in Organic Synthesis. Chemistry - A European Journal, 2022, 28, .	3.3	23
13	Traditional and sustainable approaches for the construction of C–C bonds by harnessing C–H arylation. Nature Communications, 2022, 13, 1085.	12.8	42
14	C–H deuteration of organic compounds and potential drug candidates. Chemical Society Reviews, 2022, 51, 3123-3163.	38.1	85
15	Modern Palladium-Catalyzed Transformations Involving C–H Activation and Subsequent Annulation. ACS Catalysis, 2022, 12, 5217-5230.	11.2	27
16	Frontispiece: Eneâ€Reductase: A Multifaceted Biocatalyst in Organic Synthesis. Chemistry - A European Journal, 2022, 28, .	3.3	0
17	Directing group assisted rhodium catalyzed <i>meta</i> -C–H alkynylation of arenes. Chemical Science, 2022, 13, 5616-5621.	7.4	16
18	Ligand-promoted palladium-catalyzed β-methylene C–H arylation of primary aldehydes. Chemical Science, 2022, 13, 5938-5943.	7.4	8

#	Article	IF	CITATIONS
19	Recent developments in first-row transition metal complex-catalyzed CO ₂ hydrogenation. Dalton Transactions, 2022, 51, 8160-8168.	3.3	11
20	C–H activation: A strategic approach toward lactams using transition metals. Chem Catalysis, 2022, 2, 1046-1083.	6.1	7
21	Câ^'H Methylation Using Sustainable Approaches. Catalysts, 2022, 12, 510.	3.5	4
22	Dual Ligand Enabled Nondirected C–H Chalcogenation of Arenes and Heteroarenes. Journal of the American Chemical Society, 2022, 144, 12032-12042.	13.7	30
23	Expanding chemical space by para-Câ [~] H arylation of arenes. Nature Communications, 2022, 13, .	12.8	17
24	An Unprecedented Valorisation of Marble Slurry Waste Material as Solid Support for Palladium atalysed Heck and Suzuki Reactions. ChemistrySelect, 2022, 7, .	1.5	3
25	Transition-metal-catalyzed Câ \in "H allylation reactions. CheM, 2021, 7, 555-605.	11.7	99
26	Recent development in transition metal-catalysed C–H olefination. Chemical Science, 2021, 12, 2735-2759.	7.4	134
27	Noncovalent interactions in Ir-catalyzed remote C–H borylation: a recent update. Organic Chemistry Frontiers, 2021, 8, 4349-4358.	4.5	20
28	Hexafluoroisopropanol: the magical solvent for Pd-catalyzed C–H activation. Chemical Science, 2021, 12, 3857-3870.	7.4	135
29	Manganese-Catalyzed Electrochemical Tandem Azidation–Coarctate Reaction: Easy Access to 2-Azo-benzonitriles. Organic Letters, 2021, 23, 1742-1747.	4.6	27
30	Organopalladium Intermediates in Coordination-Directed C(sp3)-H Functionalizations. Trends in Chemistry, 2021, 3, 188-203.	8.5	13
31	Manganeseâ€catalyzed Electroâ€oxidative Azidationâ€annulation Cascade to Access Oxindoles and Quinolinones. Chemistry - an Asian Journal, 2021, 16, 748-752.	3.3	13
32	Imine as a linchpin approach for meta-C–H functionalization. Nature Communications, 2021, 12, 1393.	12.8	50
33	Construction of Highly Functionalized Xanthones via Rh-Catalyzed Cascade C–H Activation/ <i>O</i> -Annulation. Organic Letters, 2021, 23, 2465-2470.	4.6	22
34	Recent Advances in External-Directing-Group-Free C–H Functionalization of Carboxylic Acids without Decarboxylation. ACS Catalysis, 2021, 11, 4205-4229.	11.2	67
35	Transition-Metal-Catalyzed C–H Arylation Using Organoboron Reagents. Synthesis, 2021, 53, 3151-3179.	2.3	4
36	Arene diversification through distal C(sp ²)â^'H functionalization. Science, 2021, 372, .	12.6	230

#	Article	IF	CITATIONS
37	Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Nonâ€Heme Iron(IV)â€Oxo during Olefin Epoxidation. Angewandte Chemie, 2021, 133, 14149-14158.	2.0	4
38	Synergistic Effect of NiLDH@YZ Hybrid and Mechanochemical Agitation on Glaser Homocoupling Reaction. Chemistry - A European Journal, 2021, 27, 8875-8885.	3.3	12
39	Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Nonâ€Heme Iron(IV)â€Oxo during Olefin Epoxidation. Angewandte Chemie - International Edition, 2021, 60, 14030-14039.	13.8	12
40	Accessing C2â€Functionalized 1,3â€(Benz)azoles through Transition Metalâ€Catalyzed Câ^'H Activation. Chemistry - A European Journal, 2021, 27, 10533-10557.	3.3	19
41	Decoding Directing Groups and Their Pivotal Role in Câ^'H Activation. Chemistry - A European Journal, 2021, 27, 12453-12508.	3.3	71
42	Ligandâ€Enabled δ (sp ³)â^'H Borylation of Aliphatic Amines. Angewandte Chemie - International Edition, 2021, 60, 18194-18200.	13.8	17
43	Ligandâ€Enabled δ (sp ³)â^'H Borylation of Aliphatic Amines. Angewandte Chemie, 2021, 133, 18342-18348.	2.0	4
44	Transient directing ligands for selective metal-catalysed C–H activation. Nature Reviews Chemistry, 2021, 5, 646-659.	30.2	65
45	Frontispiece: Accessing C2â€Functionalized 1,3â€(Benz)azoles through Transition Metal atalyzed Câ^'H Activation. Chemistry - A European Journal, 2021, 27, .	3.3	0
46	Copper Mediated Chemo―and Stereoselective Cyanation Reactions. Asian Journal of Organic Chemistry, 2021, 10, 1897-1937.	2.7	6
47	Deciphering the Role of Silver in Palladium-Catalyzed C–H Functionalizations. ACS Catalysis, 2021, 11, 9702-9714.	11.2	46
48	Supported Metal Nanoparticles Assisted Catalysis: A Broad Concept in Functionalization of Ubiquitous Câ^'H Bonds. ChemCatChem, 2021, 13, 4655-4678.	3.7	13
49	Frontispiece: Decoding Directing Groups and Their Pivotal Role in Câ^'H Activation. Chemistry - A European Journal, 2021, 27, .	3.3	0
50	Transitionâ€Metal atalyzed Selective Alkynylation of Câ^'H Bonds. Advanced Synthesis and Catalysis, 2021, 363, 4994-5027.	4.3	26
51	Recent Advances in the Nitration of Olefins. Chemical Record, 2021, 21, 2896-2908.	5.8	9
52	C–CN bond formation: an overview of diverse strategies. Chemical Communications, 2021, 57, 2210-2232.	4.1	38
53	Transition metal catalyzed C–H bond activation by <i>exo</i> -metallacycle intermediates. Chemical Communications, 2021, 57, 11885-11903.	4.1	7
54	Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chemical Society Reviews, 2021, 50, 243-472.	38.1	175

#	Article	IF	CITATIONS
55	Removal and modification of directing groups used in metal-catalyzed C–H functionalization: the magical step of conversion into †conventional' functional groups. Organic and Biomolecular Chemistry, 2021, 19, 525-547.	2.8	35
56	Recent advances in the incorporation of CO ₂ for C–H and C–C bond functionalization. Green Chemistry, 2021, 23, 9283-9317.	9.0	17
57	Ligand-redox assisted nickel catalysis toward stereoselective synthesis of (<i>n</i> +1)-membered cycloalkanes from 1, <i>n</i> -diols with methyl ketones. Chemical Science, 2021, 12, 14217-14223.	7.4	19
58	Synthesis of Polysubstituted Furans through Electrochemical Selenocyclization of Homopropargylic Alcohols. Journal of Organic Chemistry, 2021, 86, 16084-16094.	3.2	30
59	Highly Diastereoselective Synthesis of Dihydroâ€benzoimidazoâ€[1,3]â€thiazines via Electroâ€oxidative Selenocyclization of Thioallyl Benzoimidazoles. Chemistry - an Asian Journal, 2021, 16, 3895-3899.	3.3	19
60	Enabling the Facile Synthesis of Arenes by Transition Metal Catalyzed Decarbonylation Methodology. Chemical Record, 2021, , .	5.8	3
61	Direct C–E (E = Boron, Halogen, Oxygen) Bond Formation Through C–H Activation. , 2021, , .		1
62	Polyoxomolybdate (POM) nanoclusters with radiosensitizing and scintillating properties for low dose X-ray inducible radiation-radiodynamic therapy. Nanoscale Horizons, 2020, 5, 109-118.	8.0	29
63	Electrochemical Chalcogenation of <i>î²,î³</i> â€Unsaturated Amides and Oximes to Corresponding Oxazolines and Isoxazolines. Advanced Synthesis and Catalysis, 2020, 362, 1046-1052.	4.3	62
64	Alkyne Linchpin Strategy for Drug:Pharmacophore Conjugation: Experimental and Computational Realization of a <i>Meta</i> -Selective Inverse Sonogashira Coupling. Journal of the American Chemical Society, 2020, 142, 3762-3774.	13.7	111
65	Evolution of strept(avidin)-based artificial metalloenzymes in organometallic catalysis. Chemical Communications, 2020, 56, 14519-14540.	4.1	2
66	Diverse strategies for transition metal catalyzed distal C(sp ³)–H functionalizations. Chemical Science, 2020, 11, 10887-10909.	7.4	68
67	Transition Metal Catalyzed Enantioselective C(sp ²)–H Bond Functionalization. ACS Catalysis, 2020, 10, 13748-13793.	11.2	177
68	Frontispiece: Transition Metal Promoted Cascade Heterocycle Synthesis through Câ^'H Functionalization. Chemistry - A European Journal, 2020, 26, .	3.3	0
69	Fe-Catalyzed Aziridination Is Governed by the Electron Affinity of the Active Imido-Iron Species. ACS Catalysis, 2020, 10, 10010-10020.	11.2	42
70	<i>para</i> â€Selective Arylation of Arenes: A Direct Route to Biaryls by Norbornene Relay Palladation. Angewandte Chemie - International Edition, 2020, 59, 20831-20836.	13.8	38
71	<i>para</i> â€Selective Arylation of Arenes: A Direct Route to Biaryls by Norbornene Relay Palladation. Angewandte Chemie, 2020, 132, 21017-21022.	2.0	15
72	Transition Metals and Transition Metals/Lewis Acid Cooperative Catalysis for Directing Group Assisted <i>para</i> -C–H Functionalization. Chemistry Letters, 2020, 49, 1406-1420.	1.3	28

#	Article	IF	CITATIONS
73	A direct route to six and seven membered lactones <i>via</i> γ-C(sp ³)–H activation: a simple protocol to build molecular complexity. Chemical Science, 2020, 11, 9697-9702.	7.4	55
74	A directing group-assisted ruthenium-catalyzed approach to access <i>meta</i> -nitrated phenols. Chemical Communications, 2020, 56, 7100-7103.	4.1	24
75	Palladium-Catalyzed <i>meta</i> -C–H Allylation of Arenes: A Unique Combination of a Pyrimidine-Based Template and Hexafluoroisopropanol. Journal of the American Chemical Society, 2020, 142, 12453-12466.	13.7	82
76	Transition Metal Promoted Cascade Heterocycle Synthesis through Câ^'H Functionalization. Chemistry - A European Journal, 2020, 26, 9749-9783.	3.3	66
77	<i>Para</i> â€6elective Cyanation of Arenes by Hâ€Bonded Template. Chemistry - A European Journal, 2020, 26, 11558-11564.	3.3	36
78	An Update on Distal C(<i>sp</i> ^{<i>3</i>})â^'H Functionalization Involving 1,5â€HAT Emerging from Nitrogen Radicals. Israel Journal of Chemistry, 2020, 60, 303-312.	2.3	23
79	Copper in Efficient Synthesis of Aromatic Heterocycles with Single Heteroatom. European Journal of Organic Chemistry, 2020, 2020, 6859-6869.	2.4	15
80	Highvalent 3d metal-oxo mediated C–H halogenation: Biomimetic approaches. Coordination Chemistry Reviews, 2020, 408, 213174.	18.8	28
81	Regioselective C–H Sulfonylation of 2 <i>H</i> -Indazoles by Electrosynthesis. Journal of Organic Chemistry, 2020, 85, 3699-3708.	3.2	76
82	Diverse <i>meta</i> -C–H Functionalization of Amides. ACS Catalysis, 2020, 10, 5347-5352.	11.2	28
83	Ultrasoundâ€Facilitated Direct meta â€Câ^'H Functionalization of Arenes: A Timeâ€Economical Strategy under Ambient Temperature with Improved Yield and Selectivity. Chemistry - A European Journal, 2020, 26, 11426-11430.	3.3	10
84	Mechanochemical Synthesis of Functionalized Quinolines by Iodine Mediated Oxidative Annulation. Chemistry - an Asian Journal, 2020, 15, 577-580.	3.3	7
85	Overriding <i>ortho</i> selectivity by template assisted <i>meta</i> -C–H activation of benzophenones. Chemical Communications, 2020, 56, 7281-7284.	4.1	14
86	Ligandâ€Enabled Pd II â€Catalyzed Iterative γâ€C(sp3)â~'H Arylation of Free Aliphatic Acid. Angewandte Chemie, 2019, 131, 13911-13915.	2.0	21
87	Access to Multifunctionalized Benzofurans by Aryl Nickelation of Alkynes: Efficient Synthesis of the Antiâ€Arrhythmic Drug Amiodarone. Angewandte Chemie - International Edition, 2019, 58, 15808-15812.	13.8	53
88	Coordination Assisted Distal Câ^'H Alkylation of Fused Heterocycles. Angewandte Chemie - International Edition, 2019, 58, 13808-13812.	13.8	45
89	Coordination Assisted Distal Câ^'H Alkylation of Fused Heterocycles. Angewandte Chemie, 2019, 131, 13946-13950.	2.0	13
90	Ligandâ€Enabled Pd ^{II} â€Catalyzed Iterative γ (sp3)â^'H Arylation of Free Aliphatic Acid. Angewandte Chemie - International Edition, 2019, 58, 13773-13777.	13.8	88

#	Article	IF	CITATIONS
91	Cobalt-Catalyzed C(sp ²)–H Allylation of Biphenyl Amines with Unbiased Terminal Olefins. Organic Letters, 2019, 21, 8842-8846.	4.6	54
92	Baseâ€Promoted Aerobic Oxidation/Homolytic Aromatic Substitution Cascade toward the Synthesis of Phenanthridines. Advanced Synthesis and Catalysis, 2019, 361, 4941-4948.	4.3	14
93	Access to Multifunctionalized Benzofurans by Aryl Nickelation of Alkynes: Efficient Synthesis of the Antiâ€Arrhythmic Drug Amiodarone. Angewandte Chemie, 2019, 131, 15955-15959.	2.0	17
94	Orthogonal Selectivity in C–H Olefination: Synthesis of Branched Vinylarene with Unactivated Aliphatic Substitution. ACS Catalysis, 2019, 9, 9606-9613.	11.2	30
95	Role of hexafluoroisopropanol in C–H activation. Reaction Chemistry and Engineering, 2019, 4, 244-253.	3.7	105
96	Fabrication of an amyloid fibril-palladium nanocomposite: a sustainable catalyst for C–H activation and the electrooxidation of ethanol. Journal of Materials Chemistry A, 2019, 7, 4486-4493.	10.3	28
97	Palladium atalyzed Directed <i>meta</i> ‣elective Câ^'H Allylation of Arenes: Unactivated Internal Olefins as Allyl Surrogates. Angewandte Chemie, 2019, 131, 10461-10468.	2.0	24
98	Palladium atalyzed Directed <i>meta</i> elective Câ^'H Allylation of Arenes: Unactivated Internal Olefins as Allyl Surrogates. Angewandte Chemie - International Edition, 2019, 58, 10353-10360.	13.8	76
99	Direct <i>meta</i> â^'H Perfluoroalkenylation of Arenes Enabled by a Cleavable Pyrimidineâ€Based Template. Chemistry - A European Journal, 2019, 25, 10323-10327.	3.3	40
100	Rhodium catalyzed template-assisted distal <i>para</i> -C–H olefination. Chemical Science, 2019, 10, 7426-7432.	7.4	75
101	Regioselective Synthesis of Fused Furans by Decarboxylative Annulation of α,βâ€Alkenyl Carboxylic Acid with Cyclic Ketone: Synthesis of Diâ€Heteroaryl Derivatives. Angewandte Chemie, 2019, 131, 11155-11159.	2.0	8
102	Regioselective Synthesis of Fused Furans by Decarboxylative Annulation of α,βâ€Alkenyl Carboxylic Acid with Cyclic Ketone: Synthesis of Diâ€Heteroaryl Derivatives. Angewandte Chemie - International Edition, 2019, 58, 11039-11043.	13.8	40
103	Palladium-Catalyzed Template Directed C-5 Selective Olefination of Thiazoles. Journal of Organic Chemistry, 2019, 84, 8315-8321.	3.2	35
104	Bismuth nitrate as a source of nitro radical in ipso-nitration of carboxylic acids. Polyhedron, 2019, 172, 120-124.	2.2	13
105	Photocatalyzed borylation using water-soluble quantum dots. Chemical Communications, 2019, 55, 6201-6204.	4.1	38
106	Multifunctional nano-graphene based nanocomposites for multimodal imaging guided combined radioisotope therapy and chemotherapy. Carbon, 2019, 149, 55-62.	10.3	32
107	Iterative Arylation of Amino Acids and Aliphatic Amines via δâ€C(sp ³)â^'H Activation: Experimental and Computational Exploration. Angewandte Chemie, 2019, 131, 5689-5694.	2.0	26
108	Palladium atalyzed Selective <i>meta</i> â^'H Deuteration of Arenes: Reaction Design and Applications. Chemistry - A European Journal, 2019, 25, 9433-9437.	3.3	46

#	Article	IF	CITATIONS
109	Holo‣actoferrin Modified Liposome for Relieving Tumor Hypoxia and Enhancing Radiochemotherapy of Cancer. Small, 2019, 15, e1803703.	10.0	43
110	lterative Arylation of Amino Acids and Aliphatic Amines via δ (sp ³)â^'H Activation: Experimental and Computational Exploration. Angewandte Chemie - International Edition, 2019, 58, 5633-5638.	13.8	90
111	Recent advances in cobalt-catalysed C–H functionalizations. Organic and Biomolecular Chemistry, 2019, 17, 10119-10141.	2.8	94
112	Palladium Catalyzed Regioselective C4â€Arylation and Olefination of Indoles and Azaindoles. Advanced Synthesis and Catalysis, 2019, 361, 1441-1446.	4.3	73
113	Trifluoromethylation of Allenes: An Expedient Access to αâ€Trifluoromethylated Enones at Room Temperature. Chemistry - A European Journal, 2019, 25, 750-753.	3.3	27
114	Accessing Remote <i>meta</i> ―and <i>para</i> (sp ²)â^'H Bonds with Covalently Attached Directing Groups. Angewandte Chemie - International Edition, 2019, 58, 10820-10843.	13.8	273
115	Zugang zu <i>meta</i> ―und <i>para</i> (sp ²)â€Hâ€Bindungen mithilfe kovalent gebundener dirigierender Gruppen. Angewandte Chemie, 2019, 131, 10934-10958.	2.0	56
116	Promoting Highly Diastereoselective γ-C–H Chalcogenation of α-Amino Acids and Aliphatic Carboxylic Acids. ACS Catalysis, 2018, 8, 2664-2669.	11.2	87
117	Rutheniumâ€Catalyzed Aerobic Oxidation of Amines. Chemistry - an Asian Journal, 2018, 13, 2138-2148.	3.3	45
118	Synthesis of Polysubstituted Quinolines from α-2-Aminoaryl Alcohols Via Nickel-Catalyzed Dehydrogenative Coupling. Journal of Organic Chemistry, 2018, 83, 2309-2316.	3.2	107
119	Biomimetic Copper Sulfide for Chemoâ€Radiotherapy: Enhanced Uptake and Reduced Efflux of Nanoparticles for Tumor Cells under Ionizing Radiation. Advanced Functional Materials, 2018, 28, 1705161.	14.9	75
120	Rutheniumâ€Mediated Distal Câ^'H Activation. Chemistry - an Asian Journal, 2018, 13, 2243-2256.	3.3	44
121	Diverse <i>meta</i> â€Câ^'H Functionalization of Arenes across Different Linker Lengths. Angewandte Chemie, 2018, 130, 7785-7789.	2.0	19
122	Diverse <i>meta</i> â€Câ^'H Functionalization of Arenes across Different Linker Lengths. Angewandte Chemie - International Edition, 2018, 57, 7659-7663.	13.8	94
123	Highly Selective Rutheniumâ€Catalyzed Direct Oxygenation of Amines to Amides. Chemistry - A European Journal, 2018, 24, 1067-1071.	3.3	32
124	Fe-polyaniline composite nanofiber catalyst for chemoselective hydrolysis of oxime. Journal of Colloid and Interface Science, 2018, 513, 592-601.	9.4	11
125	Regiocontrolled Remote Câ^'H Olefination of Small Heterocycles. Chemistry - A European Journal, 2018, 24, 17906-17910.	3.3	35
126	Mechanistic Insights on Orthogonal Selectivity in Heterocycle Synthesis. ACS Catalysis, 2018, 8, 10111-10118.	11.2	22

#	Article	IF	CITATIONS
127	H-bonded reusable template assisted para-selective ketonisation using soft electrophilic vinyl ethers. Nature Communications, 2018, 9, 3582.	12.8	62
128	Combining transition metals and transient directing groups for C–H functionalizations. RSC Advances, 2018, 8, 19456-19464.	3.6	87
129	Natural Product Synthesis by Câ^'H Activation. Asian Journal of Organic Chemistry, 2018, 7, 1178-1192.	2.7	100
130	Development of a thermosensitive protein conjugated nanogel for enhanced radio-chemotherapy of cancer. Nanoscale, 2018, 10, 13976-13985.	5.6	42
131	Highly Effective Radioisotope Cancer Therapy with a Non-Therapeutic Isotope Delivered and Sensitized by Nanoscale Coordination Polymers. ACS Nano, 2018, 12, 7519-7528.	14.6	59
132	Manganese-salen catalyzed oxidative benzylic chlorination. Journal of Chemical Sciences, 2018, 130, 1.	1.5	11
133	Selective C–H halogenation over hydroxylation by non-heme iron(<scp>iv</scp>)-oxo. Chemical Science, 2018, 9, 7843-7858.	7.4	82
134	Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Frontiers in Pharmacology, 2018, 9, 1401.	3.5	432
135	Chelationâ€Assisted Palladiumâ€Catalyzed γâ€Arylation of Aliphatic Carboxylic Acid Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 1301-1307.	4.3	65
136	Templateâ€Assisted <i>meta</i> â^'H Alkylation and Alkenylation of Arenes. Angewandte Chemie, 2017, 129, 3230-3234.	2.0	40
137	Templateâ€Assisted <i>meta</i> â^H Alkylation and Alkenylation of Arenes. Angewandte Chemie - International Edition, 2017, 56, 3182-3186.	13.8	114
138	Rhodiumâ€Catalyzed <i>meta</i> â€Câ^'H Functionalization of Arenes. Angewandte Chemie, 2017, 129, 5356-5360.	2.0	20
139	Rhodium atalyzed <i>meta</i> â^'H Functionalization of Arenes. Angewandte Chemie - International Edition, 2017, 56, 5272-5276.	13.8	90
140	Palladium-catalyzed benzofuran and indole synthesis by multiple C–H functionalizations. Chemical Communications, 2017, 53, 6544-6556.	4.1	119
141	Introducing unactivated acyclic internal aliphatic olefins into a cobalt catalyzed allylic selective dehydrogenative Heck reaction. Chemical Science, 2017, 8, 5181-5185.	7.4	94
142	Frontispiece: Decarboxylation as the Key Step in Câ^'C Bondâ€Forming Reactions. Chemistry - A European Journal, 2017, 23, .	3.3	0
143	Palladiumâ€Catalyzed Deformylation Reactions with Detailed Experimental and in Silico Mechanistic Studies. European Journal of Organic Chemistry, 2017, 2017, 4168-4174.	2.4	15
144	Catalytic Arene <i>meta</i> -C–H Functionalization Exploiting a Quinoline-Based Template. ACS Catalysis, 2017, 7, 3162-3168.	11.2	90

#	Article	IF	CITATIONS
145	Ligand controlled switchable selectivity in ruthenium catalyzed aerobic oxidation of primary amines. Chemical Communications, 2017, 53, 4006-4009.	4.1	50
146	Nickel-Catalyzed Deamidative Step-Down Reduction of Amides to Aromatic Hydrocarbons. ACS Catalysis, 2017, 7, 433-437.	11.2	93
147	Emergence of Unactivated Olefins for the Synthesis of Olefinated Arenes. European Journal of Organic Chemistry, 2017, 2017, 1239-1252.	2.4	49
148	Copper/P(<i>t</i> Bu) ₃ â€Mediated Regiospecific Synthesis of Fused Furans and Naphthofurans. Angewandte Chemie, 2017, 129, 1131-1135.	2.0	10
149	Copper/P(<i>t</i> Bu) ₃ â€Mediated Regiospecific Synthesis of Fused Furans and Naphthofurans. Angewandte Chemie - International Edition, 2017, 56, 1111-1115.	13.8	47
150	Detailed Mechanistic Studies on Palladium-Catalyzed Selective C–H Olefination with Aliphatic Alkenes: A Significant Influence of Proton Shuttling. Journal of the American Chemical Society, 2017, 139, 763-775.	13.7	99
151	Experimental and Computational Studies on Remote γ-C(sp ³)–H Silylation and Germanylation of Aliphatic Carboxamides. ACS Catalysis, 2017, 7, 8171-8175.	11.2	102
152	Palladium catalyzed direct aliphatic γC(sp ³)–H alkenylation with alkenes and alkenyl iodides. Chemical Communications, 2017, 53, 12457-12460.	4.1	61
153	Evaluation of Mechanism on Selective, Rapid, and Superior Adsorption of Congo Red by Reusable Mesoporous α-Fe ₂ O ₃ Nanorods. ACS Sustainable Chemistry and Engineering, 2017, 5, 11255-11267.	6.7	113
154	Experimental and Computational Exploration of <i>para</i> ‣elective Silylation with a Hydrogenâ€Bonded Template. Angewandte Chemie, 2017, 129, 15099-15103.	2.0	22
155	Incorporating Unbiased, Unactivated Aliphatic Alkenes in Pd(II)-Catalyzed Olefination of Benzyl Phosphonamide. ACS Catalysis, 2017, 7, 7732-7736.	11.2	34
156	Pd-Catalyzed C–H arylation of pyridazine-based fused 1,2,4-triazoles: overriding selectivity at the usual position by undermining of preferred chelate formation. Chemical Communications, 2017, 53, 11709-11712.	4.1	24
157	Photoelectrocatalytic Reduction of CO ₂ into C1 Products by Using Modified‣emiconductorâ€Based Catalyst Systems. Asian Journal of Organic Chemistry, 2017, 6, 1519-1530.	2.7	12
158	Remote <i>meta</i> –H Cyanation of Arenes Enabled by a Pyrimidineâ€Based Auxiliary. Angewandte Chemie, 2017, 129, 12712-12716.	2.0	33
159	Remote <i>meta</i> â€C–H Cyanation of Arenes Enabled by a Pyrimidineâ€Based Auxiliary. Angewandte Chemie - International Edition, 2017, 56, 12538-12542.	13.8	99
160	Synthesis of Cu-catalysed quinazolinones using a C _{sp3} –H functionalisation/cyclisation strategy. Organic and Biomolecular Chemistry, 2017, 15, 7140-7146.	2.8	36
161	Recent Advances in Distal Aliphatic sp 3 C H Functionalization. , 2017, , 327-355.		4
162	Phosphine catalysed (5 + 1) annulation of ynone/cinnamates with primary amines. Chemical Communications, 2017, 53, 13071-13074.	4.1	12

#	Article	IF	CITATIONS
163	Palladium-Catalyzed Remote <i>meta</i> -Selective C–H Bond Silylation and Germanylation. Organometallics, 2017, 36, 2418-2423.	2.3	74
164	Decarboxylation as the Key Step in Câ^'C Bondâ€Forming Reactions. Chemistry - A European Journal, 2017, 23, 7382-7401.	3.3	298
165	Recent Developments in Palladium-Catalyzed Natural Product Synthesis via C H Activation. , 2017, , 453-470.		4
166	Experimental and Computational Exploration of <i>para</i> â€Selective Silylation with a Hydrogenâ€Bonded Template. Angewandte Chemie - International Edition, 2017, 56, 14903-14907.	13.8	107
167	Switch to Allylic Selectivity in Cobalt-Catalyzed Dehydrogenative Heck Reactions with Unbiased Aliphatic Olefins. ACS Catalysis, 2016, 6, 5493-5499.	11.2	166
168	Frontispiece: Simple and Efficient Ruthenium atalyzed Oxidation of Primary Alcohols with Molecular Oxygen. Chemistry - A European Journal, 2016, 22, .	3.3	0
169	Palladiumâ€Catalyzed Directed <i>para</i> Câ^H Functionalization of Phenols. Angewandte Chemie, 2016, 128, 7882-7886.	2.0	39
170	Simple and Efficient Ruthenium atalyzed Oxidation of Primary Alcohols with Molecular Oxygen. Chemistry - A European Journal, 2016, 22, 8814-8822.	3.3	60
171	Palladium atalyzed Directed <i>para</i> Câ~'H Functionalization of Phenols. Angewandte Chemie - International Edition, 2016, 55, 7751-7755.	13.8	184
172	Palladium catalysed meta-C–H functionalization reactions. Organic and Biomolecular Chemistry, 2016, 14, 5440-5453.	2.8	155
173	Room-Temperature <i>meta</i> -Functionalization: Pd(II)-Catalyzed Synthesis of 1,3,5-Trialkenyl Arene and <i>meta</i> -Hydroxylated Olefin. ACS Catalysis, 2016, 6, 3575-3579.	11.2	104
174	Shape Transition of TiO ₂ Nanocube to Nanospindle Embedded on Reduced Graphene Oxide with Enhanced Photocatalytic Activity. Crystal Growth and Design, 2016, 16, 6922-6932.	3.0	40
175	Palladium Nanoparticles Supported on Fibrous Silica (KCCâ€1â€PEI/Pd): A Sustainable Nanocatalyst for Decarbonylation Reactions. ChemPlusChem, 2016, 81, 1142-1146.	2.8	39
176	Cobalt atalyzed sp ² â^'H Activation: Intermolecular Heterocyclization with Allenes at Room Temperature. Angewandte Chemie, 2016, 128, 12549-12553.	2.0	38
177	Cobalt atalyzed sp ² â^'H Activation: Intermolecular Heterocyclization with Allenes at Room Temperature. Angewandte Chemie - International Edition, 2016, 55, 12361-12365.	13.8	144
178	A Doubly Biomimetic Synthetic Transformation: Catalytic Decarbonylation and Halogenation at Room Temperature by Vanadium Pentoxide. ChemCatChem, 2016, 8, 3367-3374.	3.7	9
179	Reaching the south: metal-catalyzed transformation of the aromatic para-position. Chemical Communications, 2016, 52, 12398-12414.	4.1	132
180	Traceless directing group mediated branched selective alkenylation of unbiased arenes. Chemical Communications, 2016, 52, 12191-12194.	4.1	39

#	Article	IF	CITATIONS
181	Palladium catalyzed selective distal C–H olefination of biaryl systems. Chemical Communications, 2016, 52, 14003-14006.	4.1	54
182	Design and application of Au decorated ZnO/TiO ₂ as a stable photocatalyst for wide spectral coverage. Physical Chemistry Chemical Physics, 2016, 18, 31622-31633.	2.8	50
183	Remote meta C–H bond functionalization of 2-phenethylsulphonic acid and 3-phenylpropanoic acid derivatives. Chemical Communications, 2016, 52, 13916-13919.	4.1	56
184	Palladium-Catalyzed Olefination of Aryl C–H Bonds by Using DirectingÂ-Scaffolds. Synthesis, 2016, 48, 804-815.	2.3	46
185	Directing group assisted meta-hydroxylation by C–H activation. Chemical Science, 2016, 7, 3147-3153.	7.4	140
186	Graphene oxide grafted with iridium complex as a superior heterogeneous catalyst for chemical fixation of carbon dioxide to dimethylformamide. Carbon, 2016, 100, 632-640.	10.3	27
187	Aryl Nitriles from Alkynes Using <i>tert</i> -Butyl Nitrite: Metal-Free Approach to C≡C Bond Cleavage. Organic Letters, 2016, 18, 860-863.	4.6	72
188	Sequential meta-C–H olefination of synthetically versatile benzyl silanes: effective synthesis of meta-olefinated toluene, benzaldehyde and benzyl alcohols. Chemical Communications, 2016, 52, 2027-2030.	4.1	87
189	Copper mediated decarboxylative direct C–H arylation of heteroarenes with benzoic acids. Chemical Communications, 2016, 52, 1432-1435.	4.1	86
190	Metal catalyzed defunctionalization reactions. Organic and Biomolecular Chemistry, 2016, 14, 21-35.	2.8	77
191	Surface modified multifunctional ZnFe ₂ O ₄ nanoparticles for hydrophobic and hydrophilic anti-cancer drug molecule loading. Physical Chemistry Chemical Physics, 2016, 18, 1439-1450.	2.8	53
192	Nickel atalyzed Insertion of Alkynes and Electronâ€Deficient Olefins into Unactivated sp ³ CH Bonds. Chemistry - A European Journal, 2015, 21, 11320-11324.	3.3	68
193	Palladium atalyzed Synthesis of 2,3â€Ðisubstituted Benzofurans: An Approach Towards the Synthesis of Deuterium Labeled Compounds. Advanced Synthesis and Catalysis, 2015, 357, 2331-2338.	4.3	41
194	Palladium(II) atalyzed <i>meta</i> H Olefination: Constructing Multisubstituted Arenes through Homoâ€Điolefination and Sequential Heteroâ€Điolefination. Angewandte Chemie - International Edition, 2015, 54, 8515-8519.	13.8	216
195	Selective formation of iron oxide and oxyhydroxide nanoparticles at room temperature: Critical role of concentration of ferric nitrate. Materials Chemistry and Physics, 2015, 154, 144-151.	4.0	16
196	Mechanistic elucidation of C–H oxidation by electron rich non-heme iron(<scp>iv</scp>)–oxo at room temperature. Chemical Communications, 2015, 51, 14469-14472.	4.1	54
197	Palladiumâ€Catalyzed [3+3] Annulation between Diarylamines and α,βâ€Unsaturated Acids through CH Activation: Direct Access to 4â€6ubstituted 2â€Quinolinones. Chemistry - A European Journal, 2015, 21, 8360-8364.	3.3	38
198	Divergent Reactivity in Palladiumâ€Catalyzed Annulation with Diarylamines and α,βâ€Unsaturated Acids: Direct Access to Substituted 2â€Quinolinones and Indoles. Chemistry - A European Journal, 2015, 21, 8723-8726.	3.3	37

#	Article	IF	CITATIONS
199	The regioselective iodination of quinolines, quinolones, pyridones, pyridines and uracil. Chemical Communications, 2015, 51, 17744-17747.	4.1	49
200	Remote <i>para-</i> C–H Functionalization of Arenes by a D-Shaped Biphenyl Template-Based Assembly. Journal of the American Chemical Society, 2015, 137, 11888-11891.	13.7	302
201	A multifunctional nanocomposite of magnetic γ-Fe2O3 and mesoporous fluorescent ZnO. Journal of Alloys and Compounds, 2015, 653, 187-194.	5.5	15
202	Iron-Catalyzed Regioselective Direct Arylation at the C-3 Position of <i>N</i> -Alkyl-2-pyridone. Journal of Organic Chemistry, 2015, 80, 296-303.	3.2	66
203	Orthogonal selectivity with cinnamic acids in 3-substituted benzofuran synthesis through C–H olefination of phenols. Chemical Communications, 2015, 51, 5375-5378.	4.1	61
204	Efficient and Stereoselective Nitration of Olefins with AgNO2 and TEMPO. Synlett, 2014, 25, 603-607.	1.8	17
205	Aerobic Oxynitration of Alkynes with ^{<i>t</i>} BuONO and TEMPO. Organic Letters, 2014, 16, 6302-6305.	4.6	109
206	Catalytic Electrophilic Halogenations and Haloalkoxylations by Nonâ€Heme Iron Halides. Advanced Synthesis and Catalysis, 2014, 356, 2453-2458.	4.3	24
207	Synthesis of Bis(heteroaryl) Ketones by Removal of Benzylic CHR and CO Groups. Angewandte Chemie - International Edition, 2014, 53, 2428-2432.	13.8	41
208	Predictably Selective (sp ³)C–O Bond Formation through Copper Catalyzed Dehydrogenative Coupling: Facile Synthesis of Dihydro-oxazinone Derivatives. Organic Letters, 2014, 16, 2602-2605.	4.6	91
209	Generation of Arylated Quinones by Ironâ€Catalyzed Oxidative Arylation of Phenols: Formal Synthesis of Phellodonin, Sarcodonin ε, Leucomelone and Betulinan A. Advanced Synthesis and Catalysis, 2014, 356, 705-710.	4.3	20
210	Palladium-Catalyzed Aryl C–H Olefination with Unactivated, Aliphatic Alkenes. Journal of the American Chemical Society, 2014, 136, 13602-13605.	13.7	214
211	Efficient and Simple Approaches Towards Direct Oxidative Esterification of Alcohols. Chemistry - A European Journal, 2014, 20, 15618-15624.	3.3	34
212	Radical Based Strategy toward the Synthesis of 2,3-Dihydrofurans from Aryl Ketones and Aromatic Olefins. Organic Letters, 2014, 16, 5446-5449.	4.6	53
213	<i>Meta</i> -Selective Arene C–H Bond Olefination of Arylacetic Acid Using a Nitrile-Based Directing Group. Organic Letters, 2014, 16, 5760-5763.	4.6	180
214	Palladium atalyzed Annulation of Diarylamines with Olefins through CH Activation: Direct Access to Nâ€Arylindoles. Angewandte Chemie - International Edition, 2014, 53, 11895-11899.	13.8	115
215	Iron catalysed nitrosation of olefins to oximes. Dalton Transactions, 2014, 43, 38-41.	3.3	19
216	Direct Synthesis of α-Trifluoromethyl Ketone from (Hetero)arylacetylene: Design, Intermediate Trapping, and Mechanistic Investigations. Organic Letters, 2014, 16, 4524-4527.	4.6	117

#	Article	IF	CITATIONS
217	Nickel-catalyzed hydrogenolysis of unactivated carbon–cyano bonds. Chemical Communications, 2013, 49, 8362.	4.1	43
218	Oxidative Trifluoromethylation of Unactivated Olefins: An Efficient and Practical Synthesis of αâ€Trifluoromethyl‧ubstituted Ketones. Angewandte Chemie - International Edition, 2013, 52, 9747-9750.	13.8	271
219	Ironâ€Catalyzed Direct C–H Arylation of Heterocycles and Quinones with Arylboronic Acids. European Journal of Organic Chemistry, 2013, 2013, 5251-5256.	2.4	86
220	Phase Evolution and Growth of Iron Oxide Nanoparticles: Effect of Hydrazine Addition During Sonication. Crystal Growth and Design, 2013, 13, 3637-3644.	3.0	50
221	An efficient dehydroxymethylation reaction by a palladium catalyst. Chemical Communications, 2013, 49, 252-254.	4.1	40
222	Efficient and Stereoselective Nitration of Mono- and Disubstituted Olefins with AgNO ₂ and TEMPO. Journal of the American Chemical Society, 2013, 135, 3355-3358.	13.7	203
223	Nickel-catalyzed decyanation of inert carbon–cyano bonds. Chemical Communications, 2013, 49, 69.	4.1	64
224	Decarbonylative Halogenation by a Vanadium Complex. Inorganic Chemistry, 2013, 52, 2927-2932.	4.0	27
225	Synthesis of (E)-nitroolefins via decarboxylative nitration using t-butylnitrite (t-BuONO) and TEMPO. Chemical Communications, 2013, 49, 5286.	4.1	134
226	Stereoselective Nitration of Olefins with ^{<i>t</i>} BuONO and TEMPO: Direct Access to Nitroolefins under Metal-free Conditions. Organic Letters, 2013, 15, 3384-3387.	4.6	181
227	A Predictably Selective Nitration of Olefin with Fe(NO ₃) ₃ and TEMPO. Journal of Organic Chemistry, 2013, 78, 5949-5954.	3.2	118
228	Ironâ€Mediated Decarboxylative Trifluoromethylation of α,βâ€Unsaturated Carboxylic Acids with Trifluoromethanesulfinate. European Journal of Organic Chemistry, 2013, 2013, 5247-5250.	2.4	86
229	Palladium atalyzed Synthesis of Benzofurans and Coumarins from Phenols and Olefins. Angewandte Chemie - International Edition, 2013, 52, 12669-12673.	13.8	194
230	A general and efficient aldehyde decarbonylation reaction by using a palladium catalyst. Chemical Communications, 2012, 48, 4253.	4.1	164
231	ipso-Nitration of Arylboronic Acids with Bismuth Nitrate and Perdisulfate. Organic Letters, 2012, 14, 1736-1739.	4.6	118
232	Microwave-assisted palladium mediated decarbonylation reaction: synthesis of eulatachromene. Green Chemistry, 2012, 14, 2314.	9.0	60
233	Chemoselectivity in the Cu-catalyzed O-arylation of phenols and aliphatic alcohols. Chemical Communications, 2011, 47, 8340.	4.1	46
234	Palladium-catalyzed coupling of functionalized primary and secondary amines with aryl and heteroaryl halides: two ligands suffice in most cases. Chemical Science, 2011, 2, 57-68.	7.4	315

#	Article	IF	CITATIONS
235	Metalâ€Mediated Deformylation Reactions: Synthetic and Biological Avenues. Angewandte Chemie - International Edition, 2011, 50, 12140-12142.	13.8	43
236	A (1→6)-β-glucan from a somatic hybrid of Pleurotus florida and Volvariella volvacea: isolation, characterization, and study of immunoenhancing properties. Carbohydrate Research, 2010, 345, 974-978.	2.3	29
237	Spectroscopic and Computational Studies of an End-on Bound Superoxo-Cu(II) Complex: Geometric and Electronic Factors That Determine the Ground State. Inorganic Chemistry, 2010, 49, 9450-9459.	4.0	102
238	Cu-Catalyzed Arylation of Phenols: Synthesis of Sterically Hindered and Heteroaryl Diaryl Ethers. Journal of Organic Chemistry, 2010, 75, 1791-1794.	3.2	179
239	Structural Characterization of Dietary Fiber of Green Chalcumra (Benincasa Hispida) Fruit by NMR Spectroscopic Analysis. Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	2
240	Structural investigation of a heteropolysaccharide isolated from the green fruits of Capsicum annuum. Carbohydrate Research, 2009, 344, 1130-1135.	2.3	11
241	Structural studies of an immunoenhancing water-soluble glucan isolated from hot water extract of an edible mushroom, Pleurotus florida, cultivar Assam Florida. Carbohydrate Research, 2009, 344, 2596-2601.	2.3	61
242	Isolation and characterization of a heteropolysaccharide from the corm of Amorphophallus campanulatus. Carbohydrate Research, 2009, 344, 2581-2585.	2.3	37
243	Orthogonal Cu- and Pd-Based Catalyst Systems for the O- and N-Arylation of Aminophenols. Journal of the American Chemical Society, 2009, 131, 17423-17429.	13.7	204
244	Molecular Oxygen and Sulfur Reactivity of a Cyclotriveratrylene Derived Trinuclear Copper(I) Complex. Inorganic Chemistry, 2009, 48, 8342-8356.	4.0	41
245	Structural characterization of dietary fiber of green chalcumra (Benincasa hispida) fruit by NMR spectroscopic analysis. Natural Product Communications, 2009, 4, 547-52.	0.5	4
246	Reactions of a Copper(II) Superoxo Complex Lead to CH and OH Substrate Oxygenation: Modeling Copperâ€Monooxygenase CH Hydroxylation. Angewandte Chemie - International Edition, 2008, 47, 82-85.	13.8	202
247	Structural studies of a methyl galacturonosyl-methoxyxylan isolated from the stem of Lagenaria siceraria (Lau). Carbohydrate Research, 2008, 343, 341-349.	2.3	19
248	Isolation and characterization of a heteroglycan from the fruits of Astraeus hygrometricus. Carbohydrate Research, 2008, 343, 817-824.	2.3	25
249	Structural investigation of a polysaccharide (Fr. I) isolated from the aqueous extract of an edible mushroom, Volvariella diplasia. Carbohydrate Research, 2008, 343, 1071-1078.	2.3	42
250	Structural analysis of a polysaccharide isolated from the aqueous extract of an edible mushroom, Pleurotus sajor-caju, cultivar Black Japan. Carbohydrate Research, 2008, 343, 1108-1113.	2.3	43
251	Chemical analysis of a new fucoglucan isolated from an edible mushroom, Termitomyces robustus. Carbohydrate Research, 2008, 343, 1062-1070.	2.3	28
252	Structural assignment of a heteropolysaccharide isolated from the gum of Cochlospermum religiosum (Katira gum). Carbohydrate Research, 2008, 343, 1222-1231.	2.3	45

#	Article	IF	CITATIONS
253	NMR and MALDI-TOFMS analysis of a heteroglycan isolated from hot water extract of edible mushroom, Volvariella bombycina. Carbohydrate Research, 2008, 343, 2258-2265.	2.3	23
254	Copper Dioxygen Adducts: Formation of Bis(μ-oxo)dicopper(III) versus (μ-1,2)Peroxodicopper(II) Complexes with Small Changes in One Pyridyl-Ligand Substituent. Inorganic Chemistry, 2008, 47, 3787-3800.	4.0	61
255	Copperâ^'Hydroperoxo-Mediated N-Debenzylation Chemistry Mimicking Aspects of Copper Monooxygenases. Inorganic Chemistry, 2008, 47, 8736-8747.	4.0	59
256	Suggestion of an Organometallic Intermediate in an Intramolecular Dechlorination Reaction Involving Copper(I) and a ArCH ₂ Cl Moiety. Journal of the American Chemical Society, 2008, 130, 5644-5645.	13.7	30
257	Reaction of a Copperâ^'Dioxygen Complex with Nitrogen Monoxide (•NO) Leads to a Copper(II)â^'Peroxynitrite Species. Journal of the American Chemical Society, 2008, 130, 6700-6701.	13.7	78
258	Copper(II)â^'Hydroperoxo Complex Induced Oxidative N-Dealkylation Chemistry. Journal of the American Chemical Society, 2007, 129, 6720-6721.	13.7	81
259	Copper(I)/S8Reversible Reactions Leading to an End-On Bound Dicopper(II) Disulfide Complex:Â Nucleophilic Reactivity and Analogies to Copperâ^Dioxygen Chemistry. Journal of the American Chemical Society, 2007, 129, 8882-8892.	13.7	33
260	Aryl Hydroxylation from a Mononuclear Copper-Hydroperoxo Species. Journal of the American Chemical Society, 2007, 129, 6998-6999.	13.7	121
261	A 1:1 Copperâ^'Dioxygen Adduct is an End-on Bound Superoxo Copper(II) Complex which Undergoes Oxygenation Reactions with Phenols. Journal of the American Chemical Society, 2007, 129, 264-265.	13.7	177
262	A water-soluble glucan isolated from an edible mushroom Termitomyces microcarpus. Carbohydrate Research, 2007, 342, 2484-2489.	2.3	32
263	Structural investigation of a heteropolysaccharide isolated from the pods (fruits) of Moringa oleifera (Sajina). Carbohydrate Research, 2007, 342, 2380-2389.	2.3	39
264	A μ-η2:η2-Disulfide Dicopper(II) Complex from Reaction of S8 with a Copper(I) Precursor: Reactivity of the Bound Disulfur Moiety. Angewandte Chemie - International Edition, 2006, 45, 1138-1141.	13.8	36
265	Synthesis, structure, spectral and electron-transfer properties of octahedral-[CollI(L)2]+/[ZnII(L)2] and square planar-[CulI(L){OC(r̃O)CH3}] complexes incorporating anionic form of tridentate bis(8-quinolinyl)amine [N1C9H6–N2–C9H6N3, Lâ^] ligand. Polyhedron, 2004, 23, 831-840.	2.2	30
266	A Catalysis Guide Focusing on C–H Activation Processes. Journal of the Brazilian Chemical Society, 0, ,	0.6	3