Haiying Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1605480/publications.pdf Version: 2024-02-01

HAIVING LILL

#	Article	IF	CITATIONS
1	Near-infrared fluorescent probe based on rhodamine derivative for detection of NADH in live cells. Methods, 2022, 204, 22-28.	3.8	11
2	A two-photon fluorogenic probe based on a coumarin schiff base for formaldehyde detection in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 274, 121074.	3.9	7
3	Near-infrared fluorescent probe based on cyanine scaffold for sensitive detection of uranyl ions in living cells and water samples. Microchemical Journal, 2022, 180, 107619.	4.5	19
4	A near-infrared fluorescent probe based on a hemicyanine dye with an oxazolidine switch for mitochondrial pH detection. Journal of Materials Chemistry B, 2021, 9, 857-863.	5.8	30
5	A ratiometric near-infrared fluorescent probe based on a novel reactive cyanine platform for mitochondrial pH detection. Journal of Materials Chemistry B, 2021, 9, 5150-5161.	5.8	21
6	Ratiometric Near-Infrared Fluorescent Probes Based on Hemicyanine Dyes Bearing Dithioacetal and Formal Residues for pH Detection in Mitochondria. Molecules, 2021, 26, 2088.	3.8	9
7	Ratiometric Detection of Glutathione Based on Disulfide Linkage Rupture between a FRET Coumarin Donor and a Rhodamine Acceptor. ChemBioChem, 2021, 22, 2282-2291.	2.6	15
8	Ratiometric fluorescent probes based on through-bond energy transfer of cyanine donors to near-infrared hemicyanine acceptors for mitochondrial pH detection and monitoring of mitophagy. Journal of Materials Chemistry B, 2020, 8, 1603-1615.	5.8	43
9	A new near-infrared ratiometric fluorescent probe based on quinoline-fused rhodamine dye for sensitive detection of cysteine and homocysteine in mitochondria. Dyes and Pigments, 2020, 183, 108710.	3.7	19
10	Highly sensitive determination of 4-nitrophenol with coumarin-based fluorescent molecularly imprinted poly (ionic liquid). Journal of Hazardous Materials, 2020, 398, 122854.	12.4	53
11	A FRET-based near-infrared ratiometric fluorescent probe for detection of mitochondria biothiol. Talanta, 2020, 219, 121296.	5.5	31
12	Cell Membrane-Specific Fluorescent Probe Featuring Dual and Aggregation-Induced Emissions. ACS Applied Materials & Interfaces, 2020, 12, 20172-20179.	8.0	38
13	Fluorescent probes with high pKa values based on traditional, near-infrared rhodamine, and hemicyanine fluorophores for sensitive detection of lysosomal pH variations. Methods, 2019, 168, 40-50.	3.8	13
14	Near-Infrared Hybrid Rhodol Dyes with Spiropyran Switches for Sensitive Ratiometric Sensing of pH Changes in Mitochondria and <i>Drosophila melanogaster</i> First-Instar Larvae. ACS Applied Bio Materials, 2019, 2, 4986-4997.	4.6	27
15	Near-infrared fluorescent probes based on TBET and FRET rhodamine acceptors with different p <i>K</i> _a values for sensitive ratiometric visualization of pH changes in live cells. Journal of Materials Chemistry B, 2019, 7, 198-209.	5.8	52
16	A FRETâ€Based Nearâ€Infrared Fluorescent Probe for Ratiometric Detection of Cysteine in Mitochondria. ChemBioChem, 2019, 20, 1986-1994.	2.6	18
17	Near-infrared fluorescent probes with BODIPY donors and rhodamine and merocyanine acceptors for ratiometric determination of lysosomal pH variance. Sensors and Actuators B: Chemical, 2019, 294, 1-13.	7.8	63
18	Detecting Zn(II) Ions in Live Cells with Near-Infrared Fluorescent Probes. Molecules, 2019, 24, 1592.	3.8	23

#	Article	IF	CITATIONS
19	Fluorescent probes based on π-conjugation modulation between hemicyanine and coumarin moieties for ratiometric detection of pH changes in live cells with visible and near-infrared channels. Sensors and Actuators B: Chemical, 2018, 265, 699-708.	7.8	41
20	Ratiometric Near-Infrared Fluorescent Probes Based On Through-Bond Energy Transfer and Ï€-Conjugation Modulation between Tetraphenylethene and Hemicyanine Moieties for Sensitive Detection of pH Changes in Live Cells. Bioconjugate Chemistry, 2018, 29, 1406-1418.	3.6	61
21	A cyanine-based fluorescent cassette with aggregation-induced emission for sensitive detection of pH changes in live cells. Chemical Communications, 2018, 54, 1133-1136.	4.1	65
22	A Redox Conjugated Polymer-Based All-Solid-State Reference Electrode. Polymers, 2018, 10, 1191.	4.5	12
23	A Near-Infrared Fluorescent Probe Based on a FRET Rhodamine Donor Linked to a Cyanine Acceptor for Sensitive Detection of Intracellular pH Alternations. Molecules, 2018, 23, 2679.	3.8	26
24	New Near-Infrared Fluorescent Probes with Single-Photon Anti-Stokes-Shift Fluorescence for Sensitive Determination of pH Variances in Lysosomes with a Double-Checked Capability. ACS Applied Bio Materials, 2018, 1, 549-560.	4.6	35
25	New near-infrared rhodamine dyes with large Stokes shifts for sensitive sensing of intracellular pH changes and fluctuations. Chemical Communications, 2018, 54, 7625-7628.	4.1	62
26	A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells. Analytica Chimica Acta, 2017, 968, 97-104.	5.4	83
27	Fluorescent probes for sensitive and selective detection of pH changes in live cells in visible and near-infrared channels. Journal of Materials Chemistry B, 2017, 5, 9579-9590.	5.8	55
28	Near-infrared fluorescent probe for sensitive detection of Pb(II) ions in living cells. Inorganica Chimica Acta, 2017, 468, 140-145.	2.4	28
29	Luminescent Probes for Sensitive Detection of pH Changes in Live Cells through Two Near-Infrared Luminescence Channels. ACS Sensors, 2017, 2, 924-931.	7.8	46
30	Electrochemical and Spectroscopic Properties of Boron Dipyrromethene–Thiophene–Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 9068-9080.	3.1	36
31	Near-Infrared Fluorescent Probes with Large Stokes Shifts for Sensing Zn(II) Ions in Living Cells. ACS Sensors, 2016, 1, 1408-1415.	7.8	56
32	Unusual Fluorescent Responses of Morpholine-Functionalized Fluorescent Probes to pH via Manipulation of BODIPY's HOMO and LUMO Energy Orbitals for Intracellular pH Detection. ACS Sensors, 2016, 1, 158-165.	7.8	82
33	BODIPY-Based Fluorescent Probes for Sensing Protein Surface-Hydrophobicity. Scientific Reports, 2015, 5, 18337.	3.3	73
34	Glycosylation of Quinone-Fused Polythiophene for Reagentless and Label-Free Detection of <i>E. coli</i> . Analytical Chemistry, 2015, 87, 1560-1568.	6.5	67
35	Near-infrared fluorescent probes based on piperazine-functionalized BODIPY dyes for sensitive detection of lysosomal pH. Journal of Materials Chemistry B, 2015, 3, 2173-2184.	5.8	92
36	pH-activatable near-infrared fluorescent probes for detection of lysosomal pH inside living cells. Journal of Materials Chemistry B, 2014, 2, 4500-4508.	5.8	111

#	Article	IF	CITATIONS
37	Interfacial charge transfer events of BODIPY molecules: single molecule spectroelectrochemistry and substrate effects. Physical Chemistry Chemical Physics, 2014, 16, 23150-23156.	2.8	20
38	Photoelectrochemical properties and interfacial charge transfer kinetics of BODIPY-sensitized TiO2 electrodes. RSC Advances, 2013, 3, 2306.	3.6	19
39	Highly water-soluble, near-infrared emissive BODIPY polymeric dye bearing RGD peptide residues for cancer imaging. Analytica Chimica Acta, 2013, 758, 138-144.	5.4	40
40	Glycosylated aniline polymer sensor: Amine to imine conversion on protein–carbohydrate binding. Biosensors and Bioelectronics, 2013, 46, 183-189.	10.1	35
41	Functionalization of BODIPY dyes at 2,6-positions through formyl groups. RSC Advances, 2013, 3, 4793.	3.6	25
42	BODIPY-based ratiometric fluorescent probes for the sensitive and selective sensing of cyanide ions. RSC Advances, 2013, 3, 68-72.	3.6	59
43	Highly Water-Soluble BODIPY-Based Fluorescent Probe for Sensitive and Selective Detection of Nitric Oxide in Living Cells. ACS Applied Materials & Interfaces, 2013, 5, 4107-4112.	8.0	73
44	Highly water-soluble BODIPY-based fluorescent probes for sensitive fluorescent sensing of zinc(ii). Journal of Materials Chemistry B, 2013, 1, 1722.	5.8	79
45	Controlled Knoevenagel reactions of methyl groups of 1,3,5,7-tetramethyl BODIPY dyes for unique BODIPY dyes. RSC Advances, 2012, 2, 404-407.	3.6	52
46	Highly water-soluble neutral near-infrared emissive BODIPY polymeric dyes. Journal of Materials Chemistry, 2012, 22, 2781-2790.	6.7	37
47	One-pot efficient synthesis of dimeric, trimeric, and tetrameric BODIPY dyes for panchromatic absorption. Chemical Communications, 2011, 47, 3508.	4.1	36
48	Highly Water-Soluble Neutral BODIPY Dyes with Controllable Fluorescence Quantum Yields. Organic Letters, 2011, 13, 438-441.	4.6	154
49	Preparation of stable carbon nanotube aerogels with high electrical conductivity and porosity. Carbon, 2011, 49, 2352-2361.	10.3	98
50	Near-infrared emissive BODIPY polymeric and copolymeric dyes. Polymer, 2010, 51, 5359-5368.	3.8	57
51	Bodipy-backboned polymers as electron donor in bulk heterojunction solar cells. Chemical Communications, 2010, 46, 4148.	4.1	153
52	Noncovalent Functionalization of Boron Nitride Nanotubes with Poly(<i>p</i> -phenylene-ethynylene)s and Polythiophene. ACS Applied Materials & Interfaces, 2010, 2, 104-110.	8.0	86
53	Highly Waterâ€Soluble, Fluorescent, Conjugated Fluoreneâ€Based Glycopolymers with Poly(ethylene) Tj ETQq1 I Journal, 2009, 15, 2289-2295.	l 0.78431 3.3	4 rgBT /Over 67
54	Deepâ€red emissive conjugated poly(2,6â€BODIPYâ€ethynylene)s bearing alkyl side chains. Journal of Polymer Science Part A, 2009, 47, 5354-5366.	2.3	42

#	Article	IF	CITATIONS
55	Color Tuning of Polyfluorene Emission with BODIPY Monomers. Macromolecules, 2009, 42, 1995-2001.	4.8	106
56	Synthesis and Optical Properties of Red and Deep-Red Emissive Polymeric and Copolymeric BODIPY Dyes. Chemistry of Materials, 2009, 21, 2130-2138.	6.7	95
57	Ultrasensitive Fluorescent Responses of Waterâ€Soluble, Zwitterionic, Boronic Acidâ€Bearing, Regioregular Headâ€ŧoâ€īail Polythiophene to Biological Species. Chemistry - A European Journal, 2008, 14, 1648-1653.	3.3	44
58	Pathogenic Bacterial Sensors Based on Carbohydrates as Sensing Elements. , 2008, , 659-687.		2
59	Evolution in the Supramolecular Complexes between Poly(phenylene ethynylene)-Based Polyelectrolytes and Octadecyltrimethylammonium Bromide as Revealed by Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry B, 2008, 112, 8218-8226.	2.6	17
60	Charge Density Effects on the Aggregation Properties of Poly(<i>p</i> -phenylene-ethynylene)-Based Anionic Polyelectrolytes. Journal of Physical Chemistry B, 2008, 112, 3300-3310.	2.6	22
61	Carbon Nanotubeâ ``Polymer Nanocomposite Infrared Sensor. Nano Letters, 2008, 8, 1142-1146.	9.1	193
62	Carbon nanotube surface attenuated infrared absorption. Applied Physics Letters, 2008, 92, 043105.	3.3	16
63	Electrical properties of air-stable, iodine-doped carbon-nanotube–polymer composites. Applied Physics Letters, 2007, 91, 173103.	3.3	46
64	Post-Polymerization Functionalization Approach for Highly Water-Soluble Well-Defined Regioregular Head-to-Tail Glycopolythiophenes. Macromolecules, 2007, 40, 6863-6870.	4.8	45
65	Dependence of Fluorescence Quenching of a Poly(p-phenyleneethynylene) Polyelectrolyte on the Electrostatic and Hydrophobic Properties of the Quencher. Langmuir, 2007, 23, 13203-13208.	3.5	15
66	Solvation and Aggregation of Polyphenylethynylene Based Anionic Polyelectrolytes in Dilute Solutionsâ€. Journal of Physical Chemistry B, 2007, 111, 8589-8596.	2.6	46
67	Sonogashira reactions catalyzed by water-soluble, β-cyclodextrin-capped palladium nanoparticles. Catalysis Letters, 2007, 116, 94-100.	2.6	60
68	Synthesis of Highly Water-Soluble Fluorescent Conjugated Glycopoly(p-phenylene)s for Lectin andEscherichia coli. Biomacromolecules, 2006, 7, 2470-2474.	5.4	76
69	Facile, Versatile Prepolymerization and Postpolymerization Functionalization Approaches for Well-Defined Fluorescent Conjugated Fluorene-Based Glycopolymers. Macromolecules, 2006, 39, 5747-5752.	4.8	68
70	A new method for the preparation of stable carbon nanotube organogels. Carbon, 2006, 44, 2142-2146.	10.3	64
71	Synthesis and biosensing application of highly water-soluble and cross-linkable poly(p-phenyleneethynylene) containing osmium(II) complex and aldehyde groups. Analytica Chimica Acta, 2006, 569, 27-34.	5.4	11
72	A Versatile, Molecular Engineering Approach to Simultaneously Enhanced, Multifunctional Carbon-Nanotube- Polymer Composites. Advanced Functional Materials, 2006, 16, 114-119.	14.9	108

#	Article	IF	CITATIONS
73	Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Analysis of Poly(para-phenyleneethynylene)s. International Journal of Polymer Analysis and Characterization, 2005, 10, 245-258.	1.9	3
74	Single-Molecule AFM Study of Polystyrene Grafted at Gold Surfaces. Journal of Adhesion, 2005, 81, 999-1016.	3.0	14
75	Organization-Induced Charge Redistribution in Self-Assembled Organic Monolayers on Gold. Journal of Physical Chemistry B, 2005, 109, 14064-14073.	2.6	55
76	Conjugated Thiol Linker for Enhanced Electrical Conduction of Goldâ^'Molecule Contacts. Journal of Physical Chemistry B, 2005, 109, 5398-5402.	2.6	77
77	Synthesis of Ferrocene-Grafted Poly(p-phenylene-ethynylenes) and Control of Electrochemical Behaviors of Their Thin Films. Langmuir, 2005, 21, 7860-7865.	3.5	21
78	Construction of conjugated molecular structures on gold nanoparticles via the Sonogashira coupling reactions. Chemical Communications, 2005, , 1055.	4.1	11
79	Fluorescence Quenching Mechanism of a Polyphenylene Polyelectrolyte with Other Macromolecules: Cytochrome c and Dendrimers. Langmuir, 2005, 21, 1687-1690.	3.5	38
80	Synthesis of Water-Soluble Electroactive Ferrocene-Grafted Poly(p-phenylene-ethynylene) via Phase Transfer and Its Biosensing Application. Biomacromolecules, 2005, 6, 1810-1815.	5.4	23
81	Carbon Nanotube-Induced Planarization of Conjugated Polymers in Solution. Materials Research Society Symposia Proceedings, 2004, 858, 46.	0.1	2
82	Multifunctional Single-Walled Carbon Nanotube Polycarbonate Composites. Materials Research Society Symposia Proceedings, 2004, 851, 263.	0.1	4
83	Probing Electron Tunneling Pathways:Â Electrochemical Study of Rat Heart Cytochromecand Its Mutant on Pyridine-Terminated SAMs. Journal of Physical Chemistry B, 2004, 108, 16912-16917.	2.6	68
84	Selective and Sensitive Fluorescent Sensors for Metal Ions Based on Manipulation of Side-Chain Compositions of Poly(p-phenyleneethynylene)s. Analytical Chemistry, 2004, 76, 6513-6518.	6.5	42
85	Surface-Enhanced Resonance Raman Spectroscopic and Electrochemical Study of Cytochrome c Bound on Electrodes through Coordination with Pyridinyl-Terminated Self-Assembled Monolayers. Journal of Physical Chemistry B, 2004, 108, 2261-2269.	2.6	62
86	Homogeneous carbon nanotube/polymer composites for electrical applications. Applied Physics Letters, 2003, 83, 2928-2930.	3.3	623
87	Charge-Transfer Mechanism for CytochromecAdsorbed on Nanometer Thick Films. Distinguishing Frictional Control from Conformational Gating. Journal of the American Chemical Society, 2003, 125, 7704-7714.	13.7	124
88	Control of the Electron Transfer Rate between Cytochromecand Gold Electrodes by the Manipulation of the Electrode's Hydrogen Bonding Character. Langmuir, 2003, 19, 2378-2387.	3.5	27
89	Adhesion Forces in Conducting Probe Atomic Force Microscopy. Langmuir, 2003, 19, 1929-1934.	3.5	30
90	Effect of Molecular Properties on Electron Transmission through Organic Monolayer Films. ACS Symposium Series, 2003, , 62-75.	0.5	0

#	Article	IF	CITATIONS
91	Direct Wiring of Cytochromec's Heme Unit to an Electrode:Â Electrochemical Studies. Journal of the American Chemical Society, 2002, 124, 9591-9599.	13.7	144
92	Noncovalent Engineering of Carbon Nanotube Surfaces by Rigid, Functional Conjugated Polymers. Journal of the American Chemical Society, 2002, 124, 9034-9035.	13.7	765
93	Electron-Transfer Dynamics of Cytochrome C: A Change in the Reaction Mechanism with Distance. Angewandte Chemie - International Edition, 2002, 41, 4700-4703.	13.8	80
94	The Nature of Electronic Coupling between Ferrocene and Gold through Alkanethiolate Monolayers on Electrodes:Â The Importance of Chain Composition, Interchain Coupling, and Quantum Interference. Journal of Physical Chemistry B, 2001, 105, 7699-7707.	2.6	121
95	Immobilization of cytochrome c at Au electrodes by association of a pyridine terminated SAM and the heme of cytochrome. Chemical Communications, 2001, , 1032-1033.	4.1	31
96	Ion Recognition at the Interface of Self-Assembled Monolayers (SAMs) of Bis-Thioctic Ester Derivatives of Oligo(ethyleneglycols). Chemistry - A European Journal, 2000, 6, 4385-4392.	3.3	9
97	Self-assembled monolayers of bis-thioctic ester derivatives of oligoethyleneglycols: remarkable selectivity for K+/Na+ recognition. Chemical Communications, 2000, , 141-142.	4.1	33
98	Selective K+Recognition at the Interface during Self-Assembly of a Bis-Podand Thiol on a Gold Surface. Langmuir, 2000, 16, 2706-2714.	3.5	38
99	Dithia-Crown-Annelated Tetrathiafulvalene Disulfides:Â Synthesis, Electrochemistry, Self-Assembled Films, and Metal Ion Recognition. Journal of Organic Chemistry, 2000, 65, 3292-3298.	3.2	83
100	Ion Recognition at the Interface of Self-Assembled Monolayers (SAMs) of Bis-Thioctic Ester Derivatives of Oligo(ethyleneglycols). Chemistry - A European Journal, 2000, 6, 4385-4392.	3.3	22
101	Remarkably stable self-assembled monolayers of new crown-ether annelated tetrathiafulvalene derivatives and their cation recognition propertiesâ€. Chemical Communications, 1999, , 1493-1494.	4.1	73
102	A New Dyad Based on C60and a Conjugated Dimethylaniline-Substituted Dithienylethylene Donor. Journal of Organic Chemistry, 1999, 64, 4884-4886.	3.2	62
103	Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, β-galactosidase and mutarotase in β-cyclodextrin polymer. Analytica Chimica Acta, 1998, 358, 137-144.	5.4	79
104	Direct electron transfer reactions of glucose oxidase and D-amino acid oxidase at a glassy carbon electrode in organic media. Journal of Shanghai University, 1998, 2, 77-80.	0.1	0
105	A novel thin-layer amperometric detector based on chemically modified ring-disc electrode and its application for simultaneous measurements of nitric oxide and nitrite in rat brain combined with in vivo microdialysis. Talanta, 1998, 46, 1547-1556.	5.5	30
106	A New Ultramicrosensor for Nitric Oxide Based on Electropolymerized Film of Nickel Salen. Analytical Letters, 1998, 31, 1991-2007.	1.8	18
107	Biosensing of Hydrogen Peroxide at Carbon Paste Electrode Incorporating N-Methyl Phenazine Methosulphate, Fumed-Silica and Horseradish Peroxidase. Analytical Letters, 1997, 30, 205-220.	1.8	8
108	A phenazine methosulphate-mediated sensor sensitive to lactate based on entrapment of lactate oxidase and horseradish peroxidase in composite membrane of poly(vinyl alcohol) and regenerated silk fibroin. Electrochimica Acta, 1997, 42, 349-355.	5.2	13

#	Article	IF	CITATIONS
109	Immobilization of glucose oxidase with the blend of regenerated silk fibroin and poly(vinyl alcohol) and its application to a 1,1′- dimethylferrocene-mediating glucose sensor. Applied Biochemistry and Biotechnology, 1997, 62, 105-117.	2.9	29
110	Reagentless amperometric biosensor highly sensitive to hydrogen peroxide based on the incorporation of Meldola Blue, fumed-silica and horseradish peroxidase into carbon paste. Fresenius' Journal of Analytical Chemistry, 1997, 357, 297-301.	1.5	17
111	Amperometric methylene blue-mediated sensor highly sensitive to hydrogen peroxide based on a composite membrane of regenerated silk fibroin and poly-vinyl alcohol as immobilization matrix for horseradish peroxidase. Fresenius' Journal of Analytical Chemistry, 1997, 357, 302-307.	1.5	5
112	Structure and properties of porous composite membranes of regenerated silk fibroin and poly(vinyl) Tj ETQq0 0 0 transfer mediator. Fresenius' Journal of Analytical Chemistry, 1997, 357, 812-816.	rgBT /Ove 1.5	rlock 10 Tf 5 6
113	Immobilization of horseradish peroxidase with a regenerated silk fibroin membrane and its application to a tetrathiafulvalene-mediating H2O2 sensor. Biosensors and Bioelectronics, 1997, 12, 1213-1218.	10.1	42
114	Immobilization of horseradish peroxidase onto a composite membrane of regenerated silk fibroin and polyvinyl alcohol and its application to a new methylene blue-mediating sensor for hydrogen peroxide. Enzyme and Microbial Technology, 1997, 21, 154-159.	3.2	9
115	Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode. Analytica Chimica Acta, 1997, 344, 187-199.	5.4	50
116	Immobilization of glucose oxidase onto the blend membrane of poly(vinyl alcohol) and regenerated silk fibroin: morphology and application to glucose biosensor. Journal of Biotechnology, 1996, 46, 131-138.	3.8	39
117	A Glucose Biosensor Based on Immobilization of Glucose Oxidase in Electropolymerizedo-Aminophenol Film on Platinized Glassy Carbon Electrode. Analytical Chemistry, 1996, 68, 1632-1638.	6.5	162
118	Amperometric tetrathiafulvalene-mediated sensor sensitive to reduced nicotinamide adenine dinucleotide based on co-immobilized lactate oxidase and lactate dehydrogenase. Analytical Communications, 1996, 33, 111.	2.2	3
119	Characterization of Composite Membrane of Poly(vinyl alcohol) and Regenerated Silk Fibroin for Immobilization of Horseradish Peroxidase and an Amperometric Neckelocene-Mediated Sensor Sensitive to Hydrogen Peroxide. Journal of Chemical Technology and Biotechnology, 1996, 67, 77-83.	3.2	2
120	An Amperometric Biosensor Based on Immobilised Glucose Oxidase Employing p-Benzoquinone as Electron Shuttle. Journal of Chemical Technology and Biotechnology, 1996, 67, 281-285.	3.2	3
121	Entrapment of both glucose oxidase and peroxidase in regenerated silk fibroin membrane. Fresenius' Journal of Analytical Chemistry, 1996, 355, 78-82.	1.5	13
122	Characteristics of regenerated silk fibroin membrane in its application to the immobilization of glucose oxidase and preparation of a p-benzoquinone mediating sensor for glucose. Fresenius' Journal of Analytical Chemistry, 1996, 354, 173-178.	1.5	14
123	Characterization of blend membranes of regenerated silk fibroin and PVA for immobilizing glucose oxidase and its application to a first generation of glucose sensors. Electroanalysis, 1996, 8, 480-484.	2.9	8
124	Blend membrane of regenerated silk fibroin, poly(vinyl alcohol), and peroxidase and its application to a ferrocene-mediating hydrogen peroxide sensor. Journal of Applied Polymer Science, 1996, 61, 641-647.	2.6	17
125	Feature of an amperometric ferrocyanide-mediating H2O2 sensor for organic-phase assay based on regenerated silk fibroin as immobilization matrix for peroxidase. Electrochimica Acta, 1996, 41, 77-82.	5.2	33
126	An Amperometric New Methylene Blue N-Mediating Sensor for Hydrogen Peroxide Based on Regenerated Silk Fibroin as an Immobilization Matrix for Peroxidase. Analytical Biochemistry, 1996, 236, 208-214.	2.4	47

#	Article	IF	CITATIONS
127	Feature of Entrapment of Glucose Oxidase in Regenerated Silk Fibroin Membranes and Fabrication of a 1,1′-Dimethylferrocene-Mediating Glucose Sensor. Microchemical Journal, 1996, 53, 241-252.	4.5	12
128	An amperometric Meldola Blue-mediated sensor high sensitive to hydrogen peroxide based on immobilization of horseradish peroxidase in a composite membrane of regenerated silk fibroin and poly(vinyl alcohol). Analytica Chimica Acta, 1996, 329, 97-103.	5.4	20
129	Biosensoring of hydrogen peroxide using new methylene blue N incorporated in a montmorillonite-modified horseradish peroxidase immobilization matrix as an electron shuttle. Analytica Chimica Acta, 1996, 332, 73-81.	5.4	16
130	An amperometric glucose sensor based on Eastman-AQ-tetrathiafulvalene modified electrode. Biosensors and Bioelectronics, 1996, 11, 103-110.	10.1	12
131	Immobilization of glucose oxidase in the composite membrane of regenerated silk fibroin and poly(vinyl alcohol): application to an amperometric glucose sensor. Bioelectrochemistry, 1996, 39, 303-308.	1.0	17
132	A reagentless biosensor highly sensitive to hydrogen peroxide based on new methylene blue N dispersed in Nafion® gel as the electron shuttle. Journal of Electroanalytical Chemistry, 1996, 417, 59-64.	3.8	21
133	Electrochemical immobilization of horseradish peroxidase on an electro-activated glassy carbon electrode. Journal of Electroanalytical Chemistry, 1996, 419, 85-91.	3.8	24
134	Studies on employing tetrathiafulvalene as an electron shuttle incorporated in a montmorillonite-modified immobilization matrix for an enzyme electrode. Journal of Electroanalytical Chemistry, 1996, 419, 93-98.	3.8	18
135	Structure and Properties of the Composite Membrane of Regenerated Silk Fibroin and PVA and Its Application to Amperometric Tetrathiafulvalene-Mediating Glucose Sensor. Journal of Macromolecular Science - Pure and Applied Chemistry, 1996, 33, 209-219.	2.2	7
136	Immobilization of glucose oxidase in the regenerated silk fibroin membrane: Characterization of the membrane structure and its application to an amperometric glucose sensor employing ferrocene as electron shuttle. Journal of Chemical Technology and Biotechnology, 1995, 64, 269-276.	3.2	17
137	Characterization of regenerated silk fibroin membranes for immobilizing glucose oxidase and construction of a tetrathiafulvalene-mediating glucose sensor. Journal of Applied Polymer Science, 1995, 58, 973-980.	2.6	9
138	Amperometric glucose sensor using tetrathiafulvalene in Nafion gel as electron shuttle. Analytica Chimica Acta, 1995, 300, 65-70.	5.4	17
139	An amperometric lactate sensor employing tetrathiafulvalene in Nafion film as electron shuttle. Electrochimica Acta, 1995, 40, 1845-1849.	5.2	38
140	Regenerated silk fibroin membrane as immobilization matrix for peroxidase and fabrication of a sensor for hydrogen peroxide utilizing methylene blue as electron shuttle. Analytica Chimica Acta, 1995, 316, 65-72.	5.4	55
141	Characterization of regenerated silk fibroin membrane for immobilizing peroxidase and construction of an amperometric hydrogen peroxide sensor employing phenazine methosulphate as electron shuttle. Journal of Electroanalytical Chemistry, 1995, 397, 157-162.	3.8	48
142	An Amperometric Lactate Sensor Using Tetrathiafulvalene in Polyester Ionomer Film as Electron Transfer. Analytical Letters, 1995, 28, 563-579.	1.8	11
143	Structure of the Blend Membrane of Regenerated Silk Fibroin and Glucose Oxidase and Its Application to Glucose Sensor. Analytical Letters, 1995, 28, 1593-1609.	1.8	3
144	Cyclic Voltammetric Response of Tetrathiafulvalene-Glucose Oxidase-Modified Electrode and Results for Digital Simulation. Analytical Letters, 1995, 28, 1339-1357.	1.8	3

#	Article	IF	CITATIONS
145	Nickelocene-mediating sensor for hydrogen peroxide based on bioelectrocatalytic reduction of hydrogen peroxide. Analytical Proceedings, 1995, 32, 475.	0.4	11