
Richard E Debski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1605051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direction of nonâ€recoverable strain in the glenohumeral capsule following multiple anterior dislocations: Implications for anatomic Bankart repair. Journal of Orthopaedic Research, 2023, 41, 479-488.	1.2	4
2	Tibiofemoral bony morphology features associated with ACL injury and sex utilizing threeâ€dimensional statistical shape modeling. Journal of Orthopaedic Research, 2022, 40, 87-94.	1.2	8
3	Studying the Feasibility of Postoperative Monitoring of Spinal Fusion Progress Using a Self-Powered Fowler-Nordheim Sensor-Data-Logger. IEEE Transactions on Biomedical Engineering, 2022, 69, 710-717.	2.5	4
4	Associations between range of motion, strength, tear size, patient-reported outcomes, and glenohumeral kinematics in individuals with symptomatic isolated supraspinatus tears. Journal of Shoulder and Elbow Surgery, 2022, 31, 1261-1271.	1.2	4
5	Small lateral meniscus tears propagate over time in ACL intact and deficient knees. Knee Surgery, Sports Traumatology, Arthroscopy, 2021, 29, 3068-3076.	2.3	8
6	Combining advanced computational and imaging techniques as a quantitative tool to estimate patellofemoral joint stress during downhill gait: A feasibility study. Gait and Posture, 2021, 84, 31-37.	0.6	4
7	Location and magnitude of capsular injuries varies following multiple anterior dislocations of the shoulder: Implications for surgical repair. Journal of Orthopaedic Research, 2021, 39, 648-656.	1.2	4
8	An improved quantitative ultrasonographic technique could assess anterior translation of the glenohumeral joint accurately and reliably. Knee Surgery, Sports Traumatology, Arthroscopy, 2021, 29, 2595-2605.	2.3	5
9	Tibiofemoral Bony Morphology Impacts the Knee Kinematics After Anterolateral Capsule Injury and Lateral Extraarticular Tenodesis Differently than Intact State. Journal of Biomechanics, 2021, , 110857.	0.9	0
10	Continuous-Loop Tape Technique Has Greater Stiffness and Less Elongation Compared With Tied-Suture Fixation of Full-Thickness All–Soft Tissue Quadriceps Tendon Autografts. Orthopaedic Journal of Sports Medicine, 2021, 9, 232596712110541.	0.8	1
11	Assessing the accuracy of arthroscopic and open measurements of the size of rotator cuff tears: A simulation-based study. World Journal of Orthopedics, 2021, 12, 983-990.	0.8	1
12	Elbow Biomechanics: Soft Tissue Stabilizers. Journal of Hand Surgery, 2020, 45, 140-147.	0.7	12
13	Localized Rotator Cuff Tendon Degeneration for Cadaveric Shoulders with and Without Tears Isolated to the Supraspinatus Tendon. Clinical Anatomy, 2020, 33, 1007-1013.	1.5	4
14	Hybrid Fixation Restores Tibiofibular Kinematics for Early Weightbearing After Syndesmotic Injury. Orthopaedic Journal of Sports Medicine, 2020, 8, 232596712094674.	0.8	8
15	Breast Reconstruction Using a Three-Dimensional Absorbable Mesh Scaffold and Autologous Fat Grafting: A Composite Strategy Based on Tissue-Engineering Principles. Plastic and Reconstructive Surgery, 2020, 146, 409e-413e.	0.7	22
16	Effect of localized tendon remodeling on supraspinatus tear propagation. Journal of Biomechanics, 2020, 108, 109903.	0.9	2
17	Does Lateral Extra-articular Tenodesis of the Knee Affect Anterior Cruciate Ligament Graft In Situ Forces and Tibiofemoral Contact Pressures?. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2020, 36, 1365-1373.	1.3	26
18	Partial Lateral Meniscectomy Affects Knee Stability Even in Anterior Cruciate Ligament-Intact Knees. Journal of Bone and Joint Surgery - Series A, 2020, 102, 567-573.	1.4	27

#	Article	IF	CITATIONS
19	Sagittal instability with inversion is important to evaluate after syndesmosis injury and repair: a cadaveric robotic study. Journal of Experimental Orthopaedics, 2020, 7, 18.	0.8	7
20	The correlation of quantitative ultrasound measures and supraspinatus tendon quality: A pilot study. Journal of Medical Ultrasound, 2020, 28, 162.	0.2	0
21	Lateral Meniscal Allograft Transplantation With Bone Block and Suture-Only Techniques Partially Restores Knee Kinematics and Forces. American Journal of Sports Medicine, 2019, 47, 2427-2436.	1.9	24
22	Effect of Meniscal Ramp Lesion Repair on Knee Kinematics, Bony Contact Forces, and In Situ Forces in the Anterior Cruciate Ligament. American Journal of Sports Medicine, 2019, 47, 3195-3202.	1.9	32
23	Altered shoulder kinematics using a new model for multiple dislocations-induced Bankart lesions. Clinical Biomechanics, 2019, 70, 131-136.	0.5	10
24	Impact of Screw Length on Proximal Scaphoid Fracture Biomechanics. Journal of Wrist Surgery, 2019, 08, 360-365.	0.3	3
25	Education and repetition improve success rate and quantitative measures of the pivot shift test. Knee Surgery, Sports Traumatology, Arthroscopy, 2019, 27, 3418-3425.	2.3	9
26	Superior clavicle drilling points and fluoroscopic inclination for anatomic coracoclavicular ligament reconstruction: a cadaveric study. Knee Surgery, Sports Traumatology, Arthroscopy, 2019, 27, 3813-3820.	2.3	0
27	Influence of knee position and examiner-induced motion on the kinematics of the pivot shift. Journal of Experimental Orthopaedics, 2019, 6, 11.	0.8	7
28	Optimization of compressive loading parameters to mimic in vivo cervical spine kinematics in vitro. Journal of Biomechanics, 2019, 87, 107-113.	0.9	4
29	Nonâ€uniform strain distribution in anterolateral capsule of knee: Implications for surgical repair. Journal of Orthopaedic Research, 2019, 37, 1025-1032.	1.2	6
30	Development and validation of a kinematically-driven discrete element model of the patellofemoral joint. Journal of Biomechanics, 2019, 88, 164-172.	0.9	5
31	Distal femur morphology affects rotatory knee instability in patients with anterior cruciate ligament ruptures. Knee Surgery, Sports Traumatology, Arthroscopy, 2019, 27, 1514-1519.	2.3	40
32	The effect of adipose-derived stem cells on enthesis healing after repair of acute and chronic massive rotator cuff tears in rats. Journal of Shoulder and Elbow Surgery, 2019, 28, 654-664.	1.2	46
33	Effects of Tendon Degeneration on Predictions of Supraspinatus Tear Propagation. Annals of Biomedical Engineering, 2019, 47, 154-161.	1.3	9
34	Interfragmentary Compression Forces Vary Based on Scaphoid Bone Screw Type and Fracture Location. Hand, 2019, 14, 371-376.	0.7	11
35	A Validated, Specimen-Specific Finite Element Model of the Supraspinatus Tendon Mechanical Environment. Journal of Biomechanical Engineering, 2019, 141, .	0.6	2
36	In situ force in the anterior cruciate ligament, the lateral collateral ligament, and the anterolateral capsule complex during a simulated pivot shift test. Journal of Orthopaedic Research, 2018, 36, 847-853.	1.2	18

#	Article	IF	CITATIONS
37	Lateral Extra-articular Tenodesis Has No Effect in Knees With Isolated Anterior Cruciate Ligament Injury. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2018, 34, 251-260.	1.3	52
38	Effects of tear size and location on predictions of supraspinatus tear propagation. Journal of Biomechanics, 2018, 68, 51-57.	0.9	12
39	Structural Properties of the Anterolateral Complex and Their Clinical Implications. Clinics in Sports Medicine, 2018, 37, 41-47.	0.9	8
40	Female sex is associated with greater rotatory knee laxity in collegiate athletes. Knee Surgery, Sports Traumatology, Arthroscopy, 2018, 26, 1319-1325.	2.3	22
41	An Increased Lateral Femoral Condyle Ratio Is a Risk Factor for Anterior Cruciate Ligament Injury. Journal of Bone and Joint Surgery - Series A, 2018, 100, 857-864.	1.4	80
42	The Use of Fluoroscopy Leads to Improved Identification of the Femoral Lateral Collateral Ligament Origin Site When Compared With Traditional Tactile Techniques. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2018, 34, 2487-2493.e1.	1.3	9
43	Exercise therapy for treatment of supraspinatus tears does not alter glenohumeral kinematics during internal/external rotation with the arm at the side. Knee Surgery, Sports Traumatology, Arthroscopy, 2018, 26, 267-274.	2.3	4
44	Tensile properties of a split quadriceps graft for ACL reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 2017, 25, 1249-1254.	2.3	11
45	Use of Robotic Manipulators to Study Diarthrodial Joint Function. Journal of Biomechanical Engineering, 2017, 139, .	0.6	13
46	Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering. Tissue Engineering - Part A, 2017, 23, 378-389.	1.6	93
47	The Rotator Cuff Organ: Integrating Developmental Biology, Tissue Engineering, and Surgical Considerations to Treat Chronic Massive Rotator Cuff Tears. Tissue Engineering - Part B: Reviews, 2017, 23, 318-335.	2.5	25
48	Biomechanical evaluation of knee endpoint during anterior tibial loading: Implication for physical exams. Knee, 2017, 24, 258-263.	0.8	1
49	Secondary Stabilizers of the Anterior Cruciate Ligament—Deficient Knee. Operative Techniques in Orthopaedics, 2017, 27, 107-112.	0.2	2
50	Beyond the Anterolateral Ligament: Response. American Journal of Sports Medicine, 2017, 45, NP18-NP19.	1.9	0
51	Effect of perfect anatomic repair, imperfect anatomic repair, and no repair of a 25% Hill-Sachs lesion on bony contact and capsular forces at the glenohumeral joint. Sports Orthopaedics and Traumatology, 2017, 33, 57-64.	0.1	1
52	The Anterolateral Capsule of the Knee Behaves Like a Sheet of Fibrous Tissue. American Journal of Sports Medicine, 2017, 45, 849-855.	1.9	76
53	The Role of Extra-Articular Tenodesis in Combined ACL and Anterolateral Capsular Injury. Journal of Bone and Joint Surgery - Series A, 2017, 99, 1654-1660.	1.4	32

54 In Vitro Biomechanical Analysis of Knee Rotational Stability. , 2017, , 3-14.

0

#	Article	IF	CITATIONS
55	Anatomy and Function of the Anterolateral Capsule Structures. , 2017, , 15-25.		1
56	The Influence of Surgical Stabilization on Glenohumeral Abduction Using 3-Dimensional Computed Tomography in Patients With Shoulder Instability. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2016, 32, 1495-1501.	1.3	2
57	Augmented repair of radial meniscus tear with biomimetic electrospun scaffold: an in vitro mechanical analysis. Journal of Experimental Orthopaedics, 2016, 3, 23.	0.8	16
58	Correlation between a 2D simple image analysis method and 3D bony motion during the pivot shift test. Knee, 2016, 23, 1059-1063.	0.8	21
59	Authors' Reply. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2016, 32, 730-731.	1.3	Ο
60	Does Repair of a Hill-Sachs Defect Increase Stability at the Glenohumeral Joint?. Orthopaedic Journal of Sports Medicine, 2016, 4, 232596711664509.	0.8	5
61	Macroscopic anatomical, histological and magnetic resonance imaging correlation of the lateral capsule of the knee. Knee Surgery, Sports Traumatology, Arthroscopy, 2016, 24, 2854-2860.	2.3	61
62	Structural Properties of the Anterolateral Capsule and Iliotibial Band of the Knee. American Journal of Sports Medicine, 2016, 44, 892-897.	1.9	83
63	Influence of varying compressive loading methods on physiologic motion patterns in the cervical spine. Journal of Biomechanics, 2016, 49, 167-172.	0.9	25
64	Effects of exercise therapy for the treatment ofÂsymptomatic full-thickness supraspinatus tears on inÂvivo glenohumeral kinematics. Journal of Shoulder and Elbow Surgery, 2016, 25, 641-649.	1.2	22
65	Basic biomechanic principles of knee instability. Current Reviews in Musculoskeletal Medicine, 2016, 9, 114-122.	1.3	32
66	Development of computer tablet software for clinical quantification of lateral knee compartment translation during the pivot shift test. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 217-228.	0.9	51
67	Quantitative analysis of the patella following the harvest of a quadriceps tendon autograft with a bone block. Knee Surgery, Sports Traumatology, Arthroscopy, 2016, 24, 2899-2905.	2.3	20
68	Biological responses to flexion/extension in spinal segments exâ€vivo. Journal of Orthopaedic Research, 2015, 33, 1255-1264.	1.2	17
69	The Effect of Size and Location of Tears in the Supraspinatus Tendon on Potential Tear Propagation. Journal of Biomechanical Engineering, 2015, 137, 081012.	0.6	17
70	Comparison of 3-Dimensional Computed Tomography–Based Measurement of Glenoid Bone Loss With Arthroscopic Defect Size Estimation in Patients With Anterior Shoulder Instability. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2015, 31, 1880-1885.	1.3	26
71	Effect of Tear Location on Propagation of Isolated Supraspinatus Tendon Tears During Increasing Levels of Cyclic Loading. Journal of Bone and Joint Surgery - Series A, 2015, 97, 273-278.	1.4	14
72	Diagnostic accuracy of physical examination for anterior knee instability: a systematic review. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 2805-2813.	2.3	75

#	Article	IF	CITATIONS
73	A reliable method for classifying acromial shape. International Biomechanics, 2015, 2, 36-42.	0.9	7
74	Posterior tibial translation resulting from the posterior drawer manoeuver in cadaveric knee specimens: a systematic review. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 2974-2982.	2.3	7
75	Novel technique for evaluation of knee function continuously through the range of flexion. Journal of Biomechanics, 2015, 48, 3728-3731.	0.9	18
76	The Biomechanical Function of the Anterolateral Ligament of the Knee: Letter to the Editor. American Journal of Sports Medicine, 2015, 43, NP21-NP22.	1.9	9
77	Experimental Execution of the Simulated Pivot-Shift Test: A Systematic Review of Techniques. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2015, 31, 2445-2454.e2.	1.3	26
78	OS4-4 Three-dimensional strain distribution in the attachment area of the anterior cruciate ligament during anterior translation to the knee(OS4: Advanced Clinical Joint Biomechanics). The Proceedings of the Asian Pacific Conference on Biomechanics Emerging Science and Technology in Biomechanics, 2015, 2015.8, 90.	0.0	0
79	A Method for Predicting Collagen Fiber Realignment in Non-Planar Tissue Surfaces as Applied to Glenohumeral Capsule During Clinically Relevant Deformation. Journal of Biomechanical Engineering, 2014, 136, 031003.	0.6	19
80	Strain distribution due to propagation of tears in the anterior supraspinatus tendon. Journal of Orthopaedic Research, 2014, 32, 1283-1289.	1.2	23
81	Changes to the mechanical properties of the glenohumeral capsule during anterior dislocation. Journal of Biomechanics, 2014, 47, 464-469.	0.9	10
82	Effects of External Rotation on Anteroposterior Translations in the Shoulder: A Pilot Study. Clinical Orthopaedics and Related Research, 2014, 472, 2397-2403.	0.7	1
83	Collagen fiber alignment and maximum principal strain in the glenohumeral capsule predict location of failure during uniaxial extension. Biomechanics and Modeling in Mechanobiology, 2014, 13, 379-385.	1.4	3
84	Capsule function following anterior dislocation: Implications for diagnosis of shoulder instability. Journal of Orthopaedic Research, 2013, 31, 962-968.	1.2	8
85	Injury to the anteroinferior glenohumeral capsule during anterior dislocation. Clinical Biomechanics, 2013, 28, 140-145.	0.5	10
86	The Effect of a Hill-Sachs Defect on Glenohumeral Translations, In Situ Capsular Forces, and Bony Contact Forces. American Journal of Sports Medicine, 2012, 40, 388-394.	1.9	37
87	Effects of simulated injury on the anteroinferior glenohumeral capsule. Medical and Biological Engineering and Computing, 2012, 50, 1299-1307.	1.6	7
88	Finding consistent strain distributions in the glenohumeral capsule between two subjects: Implications for development of physical examinations. Journal of Biomechanics, 2011, 44, 607-613.	0.9	29
89	Quantification of rotator cuff tear geometry: the repair ratio as a guide for surgical repair in crescent and U-shaped tears. Archives of Orthopaedic and Trauma Surgery, 2010, 130, 369-373.	1.3	5
90	The Glenohumeral Capsule Should be Evaluated as a Sheet of Fibrous Tissue: A Validated Finite Element Model. Annals of Biomedical Engineering, 2010, 38, 66-76.	1.3	46

#	Article	IF	CITATIONS
91	Development of a subject-specific model to predict the forces in the knee ligaments at high flexion angles. Medical and Biological Engineering and Computing, 2010, 48, 1077-1085.	1.6	19
92	Finite element modelling of the glenohumeral capsule can help assess the tested region during a clinical exam. Computer Methods in Biomechanics and Biomedical Engineering, 2010, 13, 413-418.	0.9	23
93	The Impact of Glenoid Labrum Thickness and Modulus on Labrum and Glenohumeral Capsule Function. Journal of Biomechanical Engineering, 2010, 132, 121003.	0.6	17
94	Effects of region and sex on the mechanical properties of the glenohumeral capsule during uniaxial extension. Journal of Applied Physiology, 2010, 108, 1711-1718.	1.2	9
95	Material Properties of the Axillary Pouch of the Glenohumeral Capsule: Is Isotropic Material Symmetry Appropriate?. Journal of Biomechanical Engineering, 2009, 131, 031007.	0.6	15
96	Hill-Sachs Defects and Repair Using Osteoarticular Allograft Transplantation. American Journal of Sports Medicine, 2009, 37, 2459-2466.	1.9	136
97	The importance of position and path repeatability on force at the knee during six-DOF joint motion. Medical Engineering and Physics, 2009, 31, 553-557.	0.8	7
98	Adaptive glenoid bone remodeling simulation. Journal of Biomechanics, 2009, 42, 1460-1468.	0.9	19
99	The current anatomical description of the inferior glenohumeral ligament does not correlate with its functional role in positions of external rotation. Journal of Orthopaedic Research, 2008, 26, 1598-1604.	1.2	31
100	Acromial morphology: Effects of suboptimal radiographs. Journal of Shoulder and Elbow Surgery, 2007, 16, 135-142.	1.2	26
101	Methodology and sensitivity studies for finite element modeling of the inferior glenohumeral ligament complex. Journal of Biomechanics, 2007, 40, 603-612.	0.9	45
102	Decreasing glenoid inclination improves function in shoulders with simulated massive rotator cuff tears. Clinical Biomechanics, 2006, 21, 942-949.	0.5	36
103	Orientation feedback during simulated simple translation tests has little clinical significance on the magnitude and precision of glenohumeral joint translations. Knee Surgery, Sports Traumatology, Arthroscopy, 2006, 14, 1194-1199.	2.3	5
104	A novel methodology to reproduce previously recorded six-degree of freedom kinematics on the same diarthrodial joint. Journal of Biomechanics, 2006, 39, 1914-1923.	0.9	3
105	Estimation of ACL forces by reproducing knee kinematics between sets of knees: A novel non-invasive methodology. Journal of Biomechanics, 2006, 39, 2371-2377.	0.9	41
106	Bi-directional mechanical properties of the posterior region of the glenohumeral capsule. Journal of Biomechanics, 2005, 38, 1365-1369.	0.9	28
107	Varying Femoral Tunnels between the Anatomical Footprint and Isometric Positions. American Journal of Sports Medicine, 2005, 33, 712-718.	1.9	303
108	Stability and instability of the glenohumeral joint: The role of shoulder muscles. Journal of Shoulder and Elbow Surgery, 2005, 14, S32-S38.	1.2	235

#	Article	IF	CITATIONS
109	Stress and strain in the anterior band of the inferior glenohumeral ligament during a simulated clinical examination. Journal of Shoulder and Elbow Surgery, 2005, 14, S24-S31.	1.2	37
110	Bi-directional Mechanical Properties of the Axillary Pouch of the Glenohumeral Capsule: Implications for Modeling and Surgical Repair. Journal of Biomechanical Engineering, 2004, 126, 284-288.	0.6	19
111	A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. Journal of Biomechanics, 2004, 37, 383-390.	0.9	136
112	Biomechanical Rationale for Development of Anatomical Reconstructions of Coracoclavicular Ligaments after Complete Acromioclavicular Joint Dislocations. American Journal of Sports Medicine, 2004, 32, 1929-1936.	1.9	256
113	Biomechanical function of the posterior horn of the medial meniscus: a human cadaveric study. Journal of Orthopaedic Science, 2004, 9, 280-284.	0.5	32
114	Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. Journal of Orthopaedic Research, 2004, 22, 85-89.	1.2	553
115	Multidirectional kinematics of the glenohumeral joint during simulated simple translation tests: Impact on clinical diagnoses. Journal of Orthopaedic Research, 2004, 22, 889-894.	1.2	16
116	Biomechanical function of surgical procedures for acromioclavicular joint dislocations. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2004, 20, 237-245.	1.3	143
117	Joint compression alters the kinematics and loading patterns of the intact and capsule-transected AC joint. Journal of Orthopaedic Research, 2003, 21, 379-385.	1.2	38
118	A quantitative analysis of valgus torque on the ACL: A human cadaveric study. Journal of Orthopaedic Research, 2003, 21, 1107-1112.	1.2	130
119	Viscoelastic behavior and structural properties of the coracoclavicular ligaments. Scandinavian Journal of Medicine and Science in Sports, 2003, 13, 305-310.	1.3	40
120	The collagen fibers of the anteroinferior capsulolabrum have multiaxial orientation to resist shoulder dislocation. Journal of Shoulder and Elbow Surgery, 2003, 12, 247-252.	1.2	27
121	Glenohumeral Translations are Only Partially Restored after Repair of a Simulated Type II Superior Labral Lesion. American Journal of Sports Medicine, 2003, 31, 56-63.	1.9	63
122	Estimation of ACL Forces Utilizing a Novel Non-Invasive Methodology That Reproduces Knee Kinematics Between Sets of Knees. , 2003, , .		1
123	Effect of arthroscopic procedures on the acromioclavicular joint. Clinical Orthopaedics and Related Research, 2003, , 89-96.	0.7	6
124	Biomechanical Analysis of an Anatomic Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2002, 30, 660-666.	1.9	867
125	Anatomy and Function of the Glenohumeral Ligaments in Anterior Shoulder Instability. Clinical Orthopaedics and Related Research, 2002, 400, 32-39.	0.7	168
126	Accuracy of anterior cruciate ligament tunnel placement with an active robotic system: A cadaveric study. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2002, 18, 968-973.	1.3	21

#	Article	IF	CITATIONS
127	The effect of soft-tissue graft fixation in anterior cruciate ligament reconstruction on graft-tunnel motion under anterior tibial loading. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2002, 18, 960-967.	1.3	86
128	Structure and Function of the Healing Medial Collateral Ligament in a Goat Model. Annals of Biomedical Engineering, 2001, 29, 173-180.	1.3	42
129	Precision of ACL Tunnel Placement Using Traditional and Robotic Techniques. Computer Aided Surgery, 2001, 6, 270-278.	1.8	55
130	Precision of ACL tunnel placement using traditional and robotic techniques. Computer Aided Surgery, 2001, 6, 270-8.	1.8	21
131	Effect of Capsular Injury on Acromioclavicular Joint Mechanics. Journal of Bone and Joint Surgery - Series A, 2001, 83, 1344-1351.	1.4	232
132	Mechanical behavior of two hamstring graft constructs for reconstruction of the anterior cruciate ligament. Journal of Orthopaedic Research, 2000, 18, 456-461.	1.2	96
133	The effect of the point of application of anterior tibial loads on human knee kinematics. Journal of Biomechanics, 2000, 33, 1147-1152.	0.9	21
134	Ligament Mechanics During Three Degree-of-Freedom Motion at the Acromioclavicular Joint. Annals of Biomedical Engineering, 2000, 28, 612-618.	1.3	112
135	Interaction between the ACL graft and MCL in a combined ACL+MCL knee injury using a goat model. Acta Orthopaedica, 2000, 71, 387-393.	1.4	62
136	Injury and Repair of Ligaments and Tendons. Annual Review of Biomedical Engineering, 2000, 2, 83-118.	5.7	158
137	Use of robotic technology for diathrodial joint research. Journal of Science and Medicine in Sport, 1999, 2, 283-297.	0.6	79
138	In situ force distribution in the glenohumeral joint capsule during anterior-posterior loading. Journal of Orthopaedic Research, 1999, 17, 769-776.	1.2	93
139	Contribution of the passive properties of the rotator cuff to glenohumeral stability during anterior-posterior loading. Journal of Shoulder and Elbow Surgery, 1999, 8, 324-329.	1.2	62
140	Biomechanics of Knee Ligaments. American Journal of Sports Medicine, 1999, 27, 533-543.	1.9	223
141	Functional Evaluation of the Ligaments at the Acromioclavicular Joint during Anteroposterior and Superoinferior Translation. American Journal of Sports Medicine, 1997, 25, 858-862.	1.9	171
142	Tensile properties of the superior glenohumeral and coracohumeral ligaments. Journal of Shoulder and Elbow Surgery, 1996, 5, 249-254.	1.2	91
143	A Biomechanical Analysis of Rotator Cuff Deficiency in a Cadaveric Model. American Journal of Sports Medicine, 1996, 24, 286-292.	1.9	252
144	A new dynamic testing apparatus to study glenohumeral joint motion. Journal of Biomechanics, 1995, 28, 869-874.	0.9	88

#	Article	IF	CITATIONS
145	Shoulder muscle forces and tendon excursions during glenohumeral abduction in the scapular plane. Journal of Shoulder and Elbow Surgery, 1995, 4, 199-208.	1.2	121