
Sven Degroeve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1604594/publications.pdf Version: 2024-02-01

SVEN DECROEVE

#	Article	IF	CITATIONS
1	Orthogonal proteomics methods to unravel the HOTAIR interactome. Scientific Reports, 2022, 12, 1513.	3.3	3
2	Interpretation of the DOME Recommendations for Machine Learning in Proteomics and Metabolomics. Journal of Proteome Research, 2022, 21, 1204-1207.	3.7	7
3	MS2Rescore: Data-Driven Rescoring Dramatically Boosts Immunopeptide Identification Rates. Molecular and Cellular Proteomics, 2022, 21, 100266.	3.8	34
4	Personalized Proteome: Comparing Proteogenomics and Open Variant Search Approaches for Single Amino Acid Variant Detection. Journal of Proteome Research, 2021, 20, 3353-3364.	3.7	10
5	Cov-MS: A Community-Based Template Assay for Mass-Spectrometry-Based Protein Detection in SARS-CoV-2 Patients. Jacs Au, 2021, 1, 750-765.	7.9	29
6	Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics. Molecular and Cellular Proteomics, 2021, 20, 100076.	3.8	31
7	DeepLC can predict retention times for peptides that carry as-yet unseen modifications. Nature Methods, 2021, 18, 1363-1369.	19.0	95
8	Massively parallel interrogation of protein fragment secretability using SECRiFY reveals features influencing secretory system transit. Nature Communications, 2021, 12, 6414.	12.8	5
9	Removing the Hidden Data Dependency of DIA with Predicted Spectral Libraries. Proteomics, 2020, 20, e1900306.	2.2	38
10	The Age of Dataâ€Driven Proteomics: How Machine Learning Enables Novel Workflows. Proteomics, 2020, 20, e1900351.	2.2	34
11	Generalized Calibration Across Liquid Chromatography Setups for Generic Prediction of Small-Molecule Retention Times. Analytical Chemistry, 2020, 92, 6571-6578.	6.5	26
12	Comprehensive and Empirical Evaluation of Machine Learning Algorithms for Small Molecule LC Retention Time Prediction. Analytical Chemistry, 2019, 91, 3694-3703.	6.5	64
13	Updated MS²PIP web server delivers fast and accurate MS² peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques. Nucleic Acids Research, 2019, 47, W295-W299.	14.5	77
14	Accurate peptide fragmentation predictions allow data driven approaches to replace and improve upon proteomics search engine scoring functions. Bioinformatics, 2019, 35, 5243-5248.	4.1	52
15	Data-Driven Rescoring of Metabolite Annotations Significantly Improves Sensitivity. Analytical Chemistry, 2018, 90, 11636-11642.	6.5	8
16	MAPPI-DAT: data management and analysis for protein–protein interaction data from the high-throughput MAPPIT cell microarray platform. Bioinformatics, 2017, 33, 1424-1425.	4.1	2
17	Identification of Quantitative Proteomic Differences between Mycobacterium tuberculosis Lineages with Altered Virulence. Frontiers in Microbiology, 2016, 7, 813.	3.5	34
18	Designing biomedical proteomics experiments: state-of-the-art and future perspectives. Expert Review of Proteomics, 2016, 13, 495-511.	3.0	13

Sven Degroeve

#	Article	IF	CITATIONS
19	A Pipeline for Differential Proteomics in Unsequenced Species. Journal of Proteome Research, 2016, 15, 1963-1970.	3.7	10
20	MS ² PIP prediction server: compute and visualize MS ² peak intensity predictions for CID and HCD fragmentation. Nucleic Acids Research, 2015, 43, W326-W330.	14.5	63
21	A Decoy-Free Approach to the Identification of Peptides. Journal of Proteome Research, 2015, 14, 1792-1798.	3.7	35
22	Machine learning applications in proteomics research: How the past can boost the future. Proteomics, 2014, 14, 353-366.	2.2	52
23	Asn ₃ , a Reliable, Robust, and Universal Lock Mass for Improved Accuracy in LC–MS and LC–MS/MS. Analytical Chemistry, 2013, 85, 11054-11060.	6.5	13
24	MS2PIP: a tool for MS/MS peak intensity prediction. Bioinformatics, 2013, 29, 3199-3203.	4.1	108
25	Predicting Tryptic Cleavage from Proteomics Data Using Decision Tree Ensembles. Journal of Proteome Research, 2013, 12, 2253-2259.	3.7	48
26	Proteome-derived Peptide Libraries to Study the Substrate Specificity Profiles of Carboxypeptidases. Molecular and Cellular Proteomics, 2013, 12, 2096-2110.	3.8	40
27	The Effect of Peptide Identification Search Algorithms on MS2-Based Label-Free Protein Quantification. OMICS A Journal of Integrative Biology, 2012, 16, 443-448.	2.0	3
28	Towards a human proteomics atlas. Analytical and Bioanalytical Chemistry, 2012, 404, 1069-1077.	3.7	12
29	Analysis of the Resolution Limitations of Peptide Identification Algorithms. Journal of Proteome Research, 2011, 10, 5555-5561.	3.7	60
30	Bioinformatics Analysis of a <i>Saccharomyces cerevisiae</i> N-Terminal Proteome Provides Evidence of Alternative Translation Initiation and Post-Translational N-Terminal Acetylation. Journal of Proteome Research, 2011, 10, 3578-3589.	3.7	53
31	Combining quantitative proteomics data processing workflows for greater sensitivity. Nature Methods, 2011, 8, 481-483.	19.0	18
32	A posteriori quality control for the curation and reuse of public proteomics data. Proteomics, 2011, 11, 2182-2194.	2.2	29
33	A reproducibilityâ€based evaluation procedure for quantifying the differences between MS/MS peak intensity normalization methods. Proteomics, 2011, 11, 1172-1180.	2.2	7
34	Translation initiation site prediction on a genomic scale: beauty in simplicity. Bioinformatics, 2007, 23, i418-i423.	4.1	48
35	Random forests as a tool for ecohydrological distribution modelling. Ecological Modelling, 2007, 207, 304-318.	2.5	293
36	Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11647-11652.	7.1	809

Sven Degroeve

#	Article	IF	CITATIONS
37	The Genome of Black Cottonwood, <i>Populus trichocarpa</i> (Torr. & Gray). Science, 2006, 313, 1596-1604.	12.6	3,945
38	Feature Ranking Using an EDA-based Wrapper Approach. Studies in Fuzziness and Soft Computing, 2006, , 243-257.	0.8	2
39	Feature Ranking Using an EDA-based Wrapper Approach. , 2006, , 243-257.		0
40	SpliceMachine: predicting splice sites from high-dimensional local context representations. Bioinformatics, 2005, 21, 1332-1338.	4.1	92
41	Large-scale structural analysis of the core promoter in mammalian and plant genomes. Nucleic Acids Research, 2005, 33, 4255-4264.	14.5	103
42	Support Vector Machines for Bass and Snare Drum Recognition. Studies in Classification, Data Analysis, and Knowledge Organization, 2005, , 616-623.	0.2	2
43	Feature selection for splice site prediction: a new method using EDA-based feature ranking. BMC Bioinformatics, 2004, 5, 64.	2.6	49
44	Digging into Acceptor Splice Site Prediction: An Iterative Feature Selection Approach. Lecture Notes in Computer Science, 2004, , 386-397.	1.3	11
45	Fast feature selection using a simple estimation of distribution algorithm: a case study on splice site prediction. Bioinformatics, 2003, 19, ii179-ii188.	4.1	51
46	Feature subset selection for splice site prediction. Bioinformatics, 2002, 18, S75-S83.	4.1	93