
Gregory M Cook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1604509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME Journal, 2016, 10, 761-777.	9.8	503
2	Unique Flexibility in Energy Metabolism Allows Mycobacteria to Combat Starvation and Hypoxia. PLoS ONE, 2010, 5, e8614.	2.5	179
3	Unique Rotary ATP Synthase and Its Biological Diversity. Annual Review of Biophysics, 2008, 37, 43-64.	10.0	167
4	Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria. Microbiology Spectrum, 2014, 2, .	3.0	164
5	Bactericidal mode of action of bedaquiline. Journal of Antimicrobial Chemotherapy, 2015, 70, 2028-2037.	3.0	161
6	Exploiting the synthetic lethality between terminal respiratory oxidases to kill <i>Mycobacterium tuberculosis</i> and clear host infection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7426-7431.	7.1	141
7	Physiology of Mycobacteria. Advances in Microbial Physiology, 2009, 55, 81-319.	2.4	135
8	Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME Journal, 2019, 13, 2617-2632.	9.8	132
9	Intracellular pH regulation by Mycobacterium smegmatis and Mycobacterium bovis BCG. Microbiology (United Kingdom), 2001, 147, 1017-1024.	1.8	126
10	An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11479-11484.	7.1	117
11	Persistence of the dominant soil phylum <i>Acidobacteria</i> by trace gas scavenging. Proceedings of the United States of America, 2015, 112, 10497-10502.	7.1	117
12	A soil actinobacterium scavenges atmospheric H ₂ using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4257-4261.	7.1	116
13	Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME Journal, 2017, 11, 2599-2610.	9.8	107
14	Structure of the bacterial type <scp>II NADH</scp> dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Molecular Microbiology, 2014, 91, 950-964.	2.5	103
15	Energetics of Pathogenic Bacteria and Opportunities for Drug Development. Advances in Microbial Physiology, 2014, 65, 1-62.	2.4	102
16	The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress. Scientific Reports, 2015, 5, 10333.	3.3	101
17	Roles of respiratory oxidases in protecting Escherichia coli K12 from oxidative stress. Antonie Van Leeuwenhoek, 2000, 78, 23-31.	1.7	100
18	The F 1 F o -ATP Synthase of Mycobacterium smegmatis Is Essential for Growth. Journal of Bacteriology, 2005, 187, 5023-5028.	2.2	100

#	Article	IF	CITATIONS
19	The vapBC Operon from Mycobacterium smegmatis Is An Autoregulated Toxin–Antitoxin Module That Controls Growth via Inhibition of Translation. Journal of Molecular Biology, 2009, 390, 353-367.	4.2	96
20	A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic <i>Bacillus</i> sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Molecular Microbiology, 2007, 65, 1181-1192.	2.5	93
21	Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. Microbiology Spectrum, 2017, 5, .	3.0	89
22	Succinate Dehydrogenase is the Regulator of Respiration in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004510.	4.7	87
23	Ionophoric effects of the antitubercular drug bedaquiline. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7326-7331.	7.1	85
24	Atmospheric Hydrogen Scavenging: from Enzymes to Ecosystems. Applied and Environmental Microbiology, 2015, 81, 1190-1199.	3.1	81
25	Ribonucleases in bacterial toxin–antitoxin systems. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 523-531.	1.9	77
26	Pyrazolo[1,5- <i>a</i>]pyridine Inhibitor of the Respiratory Cytochrome <i>bcc</i> Complex for the Treatment of Drug-Resistant Tuberculosis. ACS Infectious Diseases, 2019, 5, 239-249.	3.8	74
27	Targeting bacterial energetics to produce new antimicrobials. Drug Resistance Updates, 2018, 36, 1-12.	14.4	72
28	The Phn system of Mycobacterium smegmatis: a second high-affinity ABC-transporter for phosphate. Microbiology (United Kingdom), 2006, 152, 3453-3465.	1.8	71
29	Regulation of proline metabolism in mycobacteria and its role in carbon metabolism under hypoxia. Molecular Microbiology, 2012, 84, 664-681.	2.5	71
30	Essentiality of Succinate Dehydrogenase in Mycobacterium smegmatis and Its Role in the Generation of the Membrane Potential Under Hypoxia. MBio, 2014, 5, .	4.1	70
31	Three different [<scp><scp>NiFe</scp>] hydrogenases confer metabolic flexibility in the obligate aerobe <scp><i>M</i></scp><i>ycobacterium smegmatis</i>. Environmental Microbiology, 2014, 16, 318-330.</scp>	3.8	63
32	Bacterial Na+- or H+-coupled ATP Synthases Operating at Low Electrochemical Potential. Advances in Microbial Physiology, 2004, 49, 175-218.	2.4	61
33	A New Type of Na+-Driven ATP Synthase Membrane Rotor with a Two-Carboxylate Ion-Coupling Motif. PLoS Biology, 2013, 11, e1001596.	5.6	61
34	Biochemical and Molecular Characterization of a Na + -Translocating F 1 F o -ATPase from the Thermoalkaliphilic Bacterium Clostridium paradoxum. Journal of Bacteriology, 2006, 188, 5045-5054.	2.2	60
35	Purification and Biochemical Characterization of the F 1 F o -ATP Synthase from Thermoalkaliphilic Bacillus sp. Strain TA2.A1. Journal of Bacteriology, 2003, 185, 4442-4449.	2.2	59
36	Structural Investigations of the Membrane-Embedded Rotor Ring of the F-ATPase from Clostridium paradoxum. Journal of Bacteriology, 2006, 188, 7759-7764.	2.2	59

#	Article	IF	CITATIONS
37	Toxin-Antitoxin Systems of Mycobacterium smegmatis Are Essential for Cell Survival. Journal of Biological Chemistry, 2012, 287, 5340-5356.	3.4	59
38	Chemical Synergy between lonophore PBT2 and Zinc Reverses Antibiotic Resistance. MBio, 2018, 9, .	4.1	56
39	6-Substituted Hexamethylene Amiloride (HMA) Derivatives as Potent and Selective Inhibitors of the Human Urokinase Plasminogen Activator for Use in Cancer. Journal of Medicinal Chemistry, 2018, 61, 8299-8320.	6.4	56
40	The Growth and Survival of Mycobacterium smegmatis Is Enhanced by Co-Metabolism of Atmospheric H2. PLoS ONE, 2014, 9, e103034.	2.5	55
41	Regulation of the thermoalkaliphilic F ₁ -ATPase from <i>Caldalkalibacillus thermarum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10860-10865.	7.1	51
42	Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. PLoS Pathogens, 2020, 16, e1008287.	4.7	51
43	Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Current Opinion in Microbiology, 2014, 18, 30-38.	5.1	49
44	A Specific Adaptation in the a Subunit of Thermoalkaliphilic F1FO-ATP Synthase Enables ATP Synthesis at High pH but Not at Neutral pH Values. Journal of Biological Chemistry, 2007, 282, 17395-17404.	3.4	48
45	Derailing the aspartate pathway of Mycobacterium tuberculosis to eradicate persistent infection. Nature Communications, 2019, 10, 4215.	12.8	48
46	Inhibition of ATP Hydrolysis by Thermoalkaliphilic F 1 F o -ATP Synthase Is Controlled by the C Terminus of the ε Subunit. Journal of Bacteriology, 2006, 188, 3796-3804.	2.2	47
47	Dual inhibition of the terminal oxidases eradicates antibioticâ€ŧolerant <i>Mycobacterium tuberculosis</i> . EMBO Molecular Medicine, 2021, 13, e13207.	6.9	47
48	The mechanism of catalysis by type-II NADH:quinone oxidoreductases. Scientific Reports, 2017, 7, 40165.	3.3	45
49	The alternative sigma factor SigF of Mycobacterium smegmatis is required for survival of heat shock, acidic pH and oxidative stress. Microbiology (United Kingdom), 2008, 154, 2786-2795.	1.8	42
50	Activation of type II NADH dehydrogenase by quinolinequinones mediates antitubercular cell death. Journal of Antimicrobial Chemotherapy, 2016, 71, 2840-2847.	3.0	38
51	The structure of the catalytic domain of the ATP synthase from <i>Mycobacterium smegmatis</i> is a target for developing antitubercular drugs. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4206-4211.	7.1	38
52	Utilization of CRISPR Interference To Validate MmpL3 as a Drug Target in <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	37
53	CydDC-mediated reductant export in <i>Escherichia coli</i> controls the transcriptional wiring of energy metabolism and combats nitrosative stress. Biochemical Journal, 2016, 473, 693-701.	3.7	36
54	Repurposing a neurodegenerative disease drug to treat Gram-negative antibiotic-resistant bacterial sepsis. Science Translational Medicine, 2020, 12, .	12.4	36

#	Article	IF	CITATIONS
55	Oxidase and periplasmic cytochrome assembly in Escherichia coli K-12: CydDC and CcmAB are not required for haem–membrane association. Microbiology (United Kingdom), 2000, 146, 527-536.	1.8	36
56	Mutants of Mycobacterium smegmatis unable to grow at acidic pH in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone. Microbiology (United Kingdom), 2005, 151, 665-672.	1.8	35
57	Hypoxia-Activated Cytochrome <i>bd</i> Expression in Mycobacterium smegmatis Is Cyclic AMP Receptor Protein Dependent. Journal of Bacteriology, 2014, 196, 3091-3097.	2.2	35
58	Overexpression of a newly identified dâ€amino acid transaminase in <i>Mycobacterium smegmatis</i> complements glutamate racemase deletion. Molecular Microbiology, 2018, 107, 198-213.	2.5	33
59	The succinate dehydrogenase assembly factor, SdhE, is required for the flavinylation and activation of fumarate reductase in bacteria. FEBS Letters, 2014, 588, 414-421.	2.8	32
60	Incorporation of triphenylphosphonium functionality improves the inhibitory properties of phenothiazine derivatives in Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry, 2014, 22, 5320-5328.	3.0	32
61	Synthesis and biological evaluation of novel teixobactin analogues. Organic and Biomolecular Chemistry, 2017, 15, 8755-8760.	2.8	31
62	MmpL3 inhibitors as antituberculosis drugs. European Journal of Medicinal Chemistry, 2020, 200, 112390.	5.5	31
63	Defining the nitrogen regulated transcriptome of Mycobacterium smegmatis using continuous culture. BMC Genomics, 2015, 16, 821.	2.8	29
64	Disrupting coupling within mycobacterial F-ATP synthases subunit ε causes dysregulated energy production and cell wall biosynthesis. Scientific Reports, 2019, 9, 16759.	3.3	29
65	The cryo-EM structure of the bd oxidase from M. tuberculosis reveals a unique structural framework and enables rational drug design to combat TB. Nature Communications, 2021, 12, 5236.	12.8	29
66	Whole-genome sequencing of multidrug-resistant Mycobacterium tuberculosis isolates from Myanmar. Journal of Global Antimicrobial Resistance, 2016, 6, 113-117.	2.2	28
67	Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. Journal of Biological Chemistry, 2019, 294, 18980-18991.	3.4	28
68	Dispersal of Mycobacterium tuberculosis Driven by Historical European Trade in the South Pacific. Frontiers in Microbiology, 2019, 10, 2778.	3.5	28
69	Occurrence and expression of genes encoding methyl-compound production in rumen bacteria. Animal Microbiome, 2019, 1, 15.	3.8	27
70	Role of Alanine Racemase Mutations in Mycobacterium tuberculosis <scp>d</scp> -Cycloserine Resistance. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	24
71	Total Synthesis and Conformational Study of Callyaerinâ€A: Antiâ€Tubercular Cyclic Peptide Bearing a Rare Rigidifying (<i>Z</i>)â€2,3―Diaminoacrylamide Moiety. Angewandte Chemie - International Edition, 2018, 57, 3631-3635.	13.8	24
72	Inhalable Dry Powder of Bedaquiline for Pulmonary Tuberculosis: In Vitro Physicochemical Characterization, Antimicrobial Activity and Safety Studies. Pharmaceutics, 2019, 11, 502.	4.5	24

#	Article	IF	CITATIONS
73	Multiple Bactericidal Mechanisms of the Zinc Ionophore PBT2. MSphere, 2020, 5, .	2.9	24
74	Role of the Transporter-Like Sensor Kinase CbrA in Histidine Uptake and Signal Transduction. Journal of Bacteriology, 2015, 197, 2867-2878.	2.2	22
75	Two for the price of one: Attacking the energetic-metabolic hub of mycobacteria to produce new chemotherapeutic agents. Progress in Biophysics and Molecular Biology, 2020, 152, 35-44.	2.9	22
76	Biophysical Characterization of a Thermoalkaliphilic Molecular Motor with a High Stepping Torque Gives Insight into Evolutionary ATP Synthase Adaptation. Journal of Biological Chemistry, 2016, 291, 23965-23977.	3.4	21
77	Synthesis and activity of a diselenide bond mimetic of the antimicrobial protein caenopore-5. Chemical Science, 2016, 7, 2005-2010.	7.4	21
78	6-Substituted amiloride derivatives as inhibitors of the urokinase-type plasminogen activator for use in metastatic disease. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126753.	2.2	21
79	An amiloride derivative is active against the F1Fo-ATP synthase and cytochrome bd oxidase of Mycobacterium tuberculosis. Communications Biology, 2022, 5, 166.	4.4	21
80	Structure of the NDH-2 – HQNO inhibited complex provides molecular insight into quinone-binding site inhibitors. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 482-490.	1.0	20
81	The synthesis and evaluation of quinolinequinones as anti-mycobacterial agents. Bioorganic and Medicinal Chemistry, 2019, 27, 3532-3545.	3.0	19
82	Sucrose transport by the alkaliphilic, thermophilic Bacillus sp. strain TA2.A1 is dependent on a sodium gradient. Extremophiles, 2000, 4, 291-296.	2.3	18
83	Unprecedented Properties of Phenothiazines Unraveled by a NDH-2 Bioelectrochemical Assay Platform. Journal of the American Chemical Society, 2020, 142, 1311-1320.	13.7	18
84	Discovery of a Natural Product That Binds to the Mycobacterium tuberculosis Protein Rv1466 Using Native Mass Spectrometry. Molecules, 2020, 25, 2384.	3.8	18
85	Discovery of Cephalosporin-3′-Diazeniumdiolates That Show Dual Antibacterial and Antibiofilm Effects against <i>Pseudomonas aeruginosa</i> Clinical Cystic Fibrosis Isolates and Efficacy in a Murine Respiratory Infection Model. ACS Infectious Diseases, 2020, 6, 1460-1479.	3.8	18
86	A novel haem compound accumulated in Escherichia coli overexpressing the cydDC operon, encoding an ABC-type transporter required for cytochrome assembly. Archives of Microbiology, 2002, 178, 358-369.	2.2	17
87	Crystal Structure of PhnF, a GntR-Family Transcriptional Regulator of Phosphate Transport in Mycobacterium smegmatis. Journal of Bacteriology, 2014, 196, 3472-3481.	2.2	17
88	Alternate quinone coupling in a new class of succinate dehydrogenase may potentiate mycobacterial respiratory control. FEBS Letters, 2019, 593, 475-486.	2.8	17
89	Transcriptional Inhibition of the F ₁ F ₀ -Type ATP Synthase Has Bactericidal Consequences on the Viability of Mycobacteria. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	17
90	CRISPR interference identifies vulnerable cellular pathways with bactericidal phenotypes in <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2021, 116, 1033-1043.	2.5	17

#	Article	IF	CITATIONS
91	The intracellular pH of the thermophilic bacterium Thermoanaerobacter wiegelii during growth and production of fermentation acids. Extremophiles, 2000, 4, 279-284.	2.3	15
92	Investigation of the Essentiality of Clutamate Racemase in Mycobacterium smegmatis. Journal of Bacteriology, 2014, 196, 4239-4244.	2.2	15
93	"CLipPâ€ing on lipids to generate antibacterial lipopeptides. Chemical Science, 2020, 11, 5759-5765.	7.4	15
94	Characterization of the proline-utilization pathway in <i>Mycobacterium tuberculosis</i> through structural and functional studies. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 968-980.	2.5	14
95	FAD-sequestering proteins protect mycobacteria against hypoxic and oxidative stress. Journal of Biological Chemistry, 2019, 294, 2903-5814.	3.4	14
96	Rate-limiting transport of positively charged arginine residues through the Sec-machinery is integral to the mechanism of protein secretion. ELife, 2022, 11, .	6.0	13
97	Microbial energy management—A product of three broad tradeoffs. Advances in Microbial Physiology, 2020, 77, 139-185.	2.4	12
98	Antitubercular polyhalogenated phenothiazines and phenoselenazine with reduced binding to CNS receptors. European Journal of Medicinal Chemistry, 2020, 201, 112420.	5.5	12
99	Growth on Formic Acid Is Dependent on Intracellular pH Homeostasis for the Thermoacidophilic Methanotroph Methylacidiphilum sp. RTK17.1. Frontiers in Microbiology, 2021, 12, 651744.	3.5	12
100	Novel regulatory roles of cAMP receptor proteins in fast-growing environmental mycobacteria. Microbiology (United Kingdom), 2015, 161, 648-661.	1.8	11
101	Agricultural Origins of a Highly Persistent Lineage of Vancomycin-Resistant <i>Enterococcus faecalis</i> in New Zealand. Applied and Environmental Microbiology, 2019, 85, .	3.1	11
102	Development of a Mycobacterium smegmatis transposon mutant array for characterising the mechanism of action of tuberculosis drugs: Findings with isoniazid and its structural analogues. Tuberculosis, 2015, 95, 432-439.	1.9	10
103	â€~Tethering' fragment-based drug discovery to identify inhibitors of the essential respiratory membrane protein type II NADH dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2239-2243.	2.2	10
104	Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life. Extremophiles, 2020, 24, 923-935.	2.3	10
105	Antituberculosis Activity of the Antimalaria Cytochrome <i>bcc</i> Oxidase Inhibitor SCR0911. ACS Infectious Diseases, 2020, 6, 725-737.	3.8	10
106	Sterilizing Effects of Novel Regimens Containing TB47, Clofazimine, and Linezolid in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0070621.	3.2	10
107	Crystal structure of type II NADH:quinone oxidoreductase from <i>Caldalkalibacillus thermarum</i> with an improved resolution of 2.15â€Ã Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 541-549.	0.8	10
108	Functionalized Dioxonaphthoimidazoliums: A Redox Cycling Chemotype with Potent Bactericidal Activities against <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2021, 64, 15991-16007.	6.4	10

#	Article	IF	CITATIONS
109	Multiplexed transcriptional repression identifies a network of bactericidal interactions between mycobacterial respiratory complexes. IScience, 2022, 25, 103573.	4.1	10
110	Deciphering functional redundancy and energetics of malate oxidation in mycobacteria. Journal of Biological Chemistry, 2022, 298, 101859.	3.4	10
111	Bacillus subtilis as a Platform for Molecular Characterisation of Regulatory Mechanisms of Enterococcus faecalis Resistance against Cell Wall Antibiotics. PLoS ONE, 2014, 9, e93169.	2.5	9
112	A bacterial oxidase like no other?. Science, 2016, 352, 518-519.	12.6	9
113	Total Synthesis and Conformational Study of Callyaerinâ€A: Antiâ€Tubercular Cyclic Peptide Bearing a Rare Rigidifying (<i>Z</i>)â€2,3―Diaminoacrylamide Moiety. Angewandte Chemie, 2018, 130, 3693-3697.	2.0	9
114	Synthesis and Investigation of Phthalazinones as Antitubercular Agents. Chemistry - an Asian Journal, 2019, 14, 1278-1285.	3.3	9
115	Cellular and Structural Basis of Synthesis of the Unique Intermediate Dehydro-F ₄₂₀ -0 in Mycobacteria. MSystems, 2020, 5, .	3.8	9
116	Systematic evaluation of structure–property relationships and pharmacokinetics in 6-(hetero)aryl-substituted matched pair analogs of amiloride and 5-(N,N-hexamethylene)amiloride. Bioorganic and Medicinal Chemistry, 2021, 37, 116116.	3.0	9
117	Nitric Oxide-Dependent Electron Transport Chain Inhibition by the Cytochrome <i>bc</i> ₁ Inhibitor and Pretomanid Combination Kills <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2021, 65, e0095621.	3.2	9
118	Utilization of CRISPR interference to investigate the contribution of genes to pathogenesis in a macrophage model of Mycobacterium tuberculosis infection. Journal of Antimicrobial Chemotherapy, 2021, , .	3.0	9
119	Potent Bactericidal Antimycobacterials Targeting the Chaperone ClpC1 Based on the Depsipeptide Natural Products Ecumicin and Ohmyungsamycin A. Journal of Medicinal Chemistry, 2022, 65, 4893-4908.	6.4	9
120	Structure and Function of AmtR in Mycobacterium smegmatis: Implications for Post-Transcriptional Regulation of Urea Metabolism through a Small Antisense RNA. Journal of Molecular Biology, 2016, 428, 4315-4329.	4.2	8
121	Rapid molecular diagnosis of the Mycobacterium tuberculosis Rangipo strain responsible for the largest recurring TB cluster in New Zealand. Diagnostic Microbiology and Infectious Disease, 2017, 88, 138-140.	1.8	8
122	Genomewide Profiling of the Enterococcus faecalis Transcriptional Response to Teixobactin Reveals CroRS as an Essential Regulator of Antimicrobial Tolerance. MSphere, 2019, 4, .	2.9	8
123	Total Synthesis and Antimycobacterial Activity of Ohmyungsamycinâ€A, Deoxyecumicin, and Ecumicin. Chemistry - A European Journal, 2020, 26, 15200-15205.	3.3	8
124	<i>Mycobacterium smegmatis</i> Resists the Bactericidal Activity of Hypochlorous Acid Produced in Neutrophil Phagosomes. Journal of Immunology, 2021, 206, 1901-1912.	0.8	8
125	Genomic Profiling of <i>Mycobacterium tuberculosis</i> Strains, Myanmar. Emerging Infectious Diseases, 2021, 27, 2847-2855.	4.3	8
126	Synthetic Sansanmycin Analogues as Potent <i>Mycobacterium tuberculosis</i> Translocase I Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 17326-17345.	6.4	8

#	Article	IF	CITATIONS
127	Oral Bacitracin: A Consideration for Suppression of Intestinal Vancomycin-Resistant Enterococci (VRE) and for VRE Bacteremia From an Apparent Gastrointestinal Tract Source. Clinical Infectious Diseases, 2015, 60, 1726-1728.	5.8	7
128	Synthesis of paenipeptin C′ analogues employing solution-phase CLipPA chemistry. Organic and Biomolecular Chemistry, 2020, 18, 4381-4385.	2.8	7
129	Functional characterization of BcrR: a one-component transmembrane signal transduction system for bacitracin resistance. Microbiology (United Kingdom), 2019, 165, 475-487.	1.8	7
130	Comparison of lipid and detergent enzyme environments for identifying inhibitors of membrane-bound energy-transducing proteins. Journal of Microbiological Methods, 2016, 120, 41-43.	1.6	6
131	Substituted sulfonamide bioisosteres of 8-hydroxyquinoline as zinc-dependent antibacterial compounds. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127110.	2.2	6
132	Disruption of Metallostasis in the Anaerobic Human Pathogen <i>Fusobacterium nucleatum</i> by the Zinc Ionophore PBT2. ACS Infectious Diseases, 2021, 7, 2285-2298.	3.8	6
133	A Concise Synthetic Strategy Towards the Novel Calcium-dependent Lipopeptide Antibiotic, Malacidin A and Analogues. Frontiers in Chemistry, 2021, 9, 687875.	3.6	6
134	Amino acid transport by Sphingomonas sp. strain Ant 17 isolated from oil-contaminated Antarctic soil. Polar Biology, 2003, 26, 560-566.	1.2	5
135	First 2 Extensively Drug-Resistant Tuberculosis Cases From Myanmar Treated With Bedaquiline. Clinical Infectious Diseases, 2017, 65, 531-532.	5.8	5
136	Genotypic diversity of Mycobacterium tuberculosis strains in Myanmar. Infectious Diseases, 2017, 49, 237-239.	2.8	5
137	Tackling tuberculosis in the indigenous people of New Zealand. Lancet Public Health, The, 2019, 4, e496.	10.0	5
138	Synthesis of Functionalised Chromonylâ€pyrimidines and Their Potential as Antimycobacterial Agents. ChemistrySelect, 2020, 5, 4347-4355.	1.5	5
139	Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria. , 0, , 389-409.		5
140	Stereochemical Effects on the Antimicrobial Properties of Tetrasubstituted 2,5-Diketopiperazines. ACS Medicinal Chemistry Letters, 2022, 13, 632-640.	2.8	5
141	Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. , 0, , 295-316.		4
142	Bridging the Gap Between a TB Drug and Its Target. Science Translational Medicine, 2012, 4, 150fs33.	12.4	3
143	A high-throughput screening assay for identification of inhibitors of the A1AO-ATP synthase of the rumen methanogen Methanobrevibacter ruminantium M1. Journal of Microbiological Methods, 2015, 110, 15-17.	1.6	3
144	Complete Genome Sequence of a New Zealand Isolate of the Bovine Pathogen Streptococcus uberis. Genome Announcements, 2018, 6, .	0.8	3

#	Article	IF	CITATIONS
145	Structure of F 1 -ATPase from the obligate anaerobe Fusobacterium nucleatum. Open Biology, 2019, 9, 190066.	3.6	3
146	Antimicrobial tolerance and its role in the development of resistance: Lessons from enterococci. Advances in Microbial Physiology, 2022, , .	2.4	3
147	Draft Genome Sequences of Two Drug-Resistant Mycobacterium tuberculosis Isolates from Myanmar. Genome Announcements, 2016, 4, .	0.8	2
148	Drug-resistant tuberculosis among previously treated patients in Yangon, Myanmar. International Journal of Mycobacteriology, 2016, 5, 366-367.	0.6	2
149	Annotated compound data for modulators of detergent-solubilised or lipid-reconstituted respiratory type II NADH dehydrogenase activity obtained by compound library screening. Data in Brief, 2016, 6, 275-278.	1.0	2
150	Microarray dataset on the genome-wide expression profile of an M. smegmatis amtR mutant (JR258) compared to M. smegmatis mc 2 155. Data in Brief, 2017, 10, 38-40.	1.0	2
151	Acquired Resistance to Antituberculosis Drugs. Emerging Infectious Diseases, 2018, 24, 2134-2134.	4.3	2
152	Microtiter Screening Reveals Oxygen-Dependent Antimicrobial Activity of Natural Products Against Mastitis-Causing Bacteria. Frontiers in Microbiology, 2019, 10, 1995.	3.5	2
153	C-2 derivatized 8-sulfonamidoquinolines as antibacterial compounds. Bioorganic and Medicinal Chemistry, 2021, 29, 115837.	3.0	2
154	Survival of Streptococcus pyogenes under stress and starvation. FEMS Microbiology Letters, 1999, 176, 421-428.	1.8	2
155	Editorial overview: Cell regulation: Microbial cell regulation—looking in from the outside. Current Opinion in Microbiology, 2014, 18, v-vii.	5.1	1
156	First- and second-line antituberculosis drug resistance patterns among previous treatment failure patients in Myanmar. Journal of Global Antimicrobial Resistance, 2017, 9, 34-35.	2.2	1
157	Evaluation of the genotype MTBDRsl test for detection of second-line drug resistance in drug-resistant Mycobacterium tuberculosis strains in Myanmar. Infectious Diseases, 2017, 49, 865-866.	2.8	1
158	Association between anti-tuberculosis drug resistance-conferring mutations and treatment outcomes in Myanmar. Infectious Diseases, 2018, 50, 388-390.	2.8	1
159	Microbiome dataset from the upper respiratory tract of patients living with HIV, HIV/TB and TB from Myanmar. Data in Brief, 2018, 21, 354-357.	1.0	1
160	Synthesis and Biological Evaluation of (â^') and (+)â€ 6 piroleucettadine and Analogues. ChemMedChem, 2021, 16, 1308-1315.	3.2	1
161	Using genome comparisons of wild-type and resistant mutants of Methanococcus maripaludis to help understand mechanisms of resistance to methane inhibitors. Access Microbiology, 2021, 3, 000244.	0.5	1
162	Discovery of 5-methylpyrimidopyridone analogues as selective antimycobacterial agents. Bioorganic and Medicinal Chemistry, 2021, 49, 116426.	3.0	1

#	Article	IF	CITATIONS
163	Innenrücktitelbild: Total Synthesis and Conformational Study of Callyaerinâ€A: Antiâ€Tubercular Cyclic Peptide Bearing a Rare Rigidifying (<i>Z</i>)â€2,3―Diaminoacrylamide Moiety (Angew. Chem. 14/2018). Angewandte Chemie, 2018, 130, 3897-3897.	2.0	0
164	Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. FASEB Journal, 2020, 34, 1-1.	0.5	0
165	Bacterial respiration keeps amazing us in the 21st century. Biochemist, 0, , .	0.5	0
166	Evaluation of the rapid molecular diagnostic test for the New Zealand Mycobacterium tuberculosis Rangipo strain in a clinical setting. New Zealand Medical Journal, 2018, 131, 70-72.	0.5	0
167	Title is missing!. , 2020, 16, e1008287.		0
168	Title is missing!. , 2020, 16, e1008287.		0
169	Title is missing!. , 2020, 16, e1008287.		0
170	Title is missing!. , 2020, 16, e1008287.		0