
Margherita Sisto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1604491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	E-Cadherin Signaling in Salivary Gland Development and Autoimmunity. Journal of Clinical Medicine, 2022, 11, 2241.	2.4	8
2	Sjögren's Syndrome-Related Organs Fibrosis: Hypotheses and Realities. Journal of Clinical Medicine, 2022, 11, 3551.	2.4	6
3	Organ Fibrosis and Autoimmunity: The Role of Inflammation in TGFβ-Dependent EMT. Biomolecules, 2021, 11, 310.	4.0	55
4	SMADS-Mediate Molecular Mechanisms in Sjögren's Syndrome. International Journal of Molecular Sciences, 2021, 22, 3203.	4.1	14
5	ADAM 17 and Epithelial-to-Mesenchymal Transition: The Evolving Story and Its Link to Fibrosis and Cancer. Journal of Clinical Medicine, 2021, 10, 3373.	2.4	13
6	Cadherin Signaling in Cancer and Autoimmune Diseases. International Journal of Molecular Sciences, 2021, 22, 13358.	4.1	18
7	Understanding the Complexity of Sjögren's Syndrome: Remarkable Progress in Elucidating NF-κB Mechanisms. Journal of Clinical Medicine, 2020, 9, 2821.	2.4	9
8	IL-6 Contributes to the TGF-β1-Mediated Epithelial to Mesenchymal Transition in Human Salivary Gland Epithelial Cells. Archivum Immunologiae Et Therapiae Experimentalis, 2020, 68, 27.	2.3	14
9	Special Issue—"Diseases of the Salivary Glands― Journal of Clinical Medicine, 2020, 9, 3886.	2.4	1
10	TGFβ1-Smad canonical and -Erk noncanonical pathways participate in interleukin-17-induced epithelial–mesenchymal transition in Sjögren's syndrome. Laboratory Investigation, 2020, 100, 824-836.	3.7	28
11	Interleukin-17 and -22 synergy linking inflammation and EMT-dependent fibrosis in Sjögren's syndrome. Clinical and Experimental Immunology, 2019, 198, 261-272.	2.6	34
12	Aquaporin water channels: New perspectives on the potential role in inflammation. Advances in Protein Chemistry and Structural Biology, 2019, 116, 311-345.	2.3	21
13	Reduced myofilament component in primary Sjögren's syndrome salivary gland myoepithelial cells. Journal of Molecular Histology, 2018, 49, 111-121.	2.2	5
14	The TGF- <i>β</i> 1 Signaling Pathway as an Attractive Target in the Fibrosis Pathogenesis of Sjögren's Syndrome. Mediators of Inflammation, 2018, 2018, 1-14.	3.0	47
15	The role of the epithelial-to-mesenchymal transition (EMT) in diseases of the salivary glands. Histochemistry and Cell Biology, 2018, 150, 133-147.	1.7	24
16	X-linked ectodermal dysplasia receptor (XEDAR) gene silencing prevents caspase-3-mediated apoptosis in SjĶgren's syndrome. Clinical and Experimental Medicine, 2017, 17, 111-119.	3.6	19
17	TLR2 signals via NF-κB to drive IL-15 production in salivary gland epithelial cells derived from patients with primary Sjögren's syndrome. Clinical and Experimental Medicine, 2017, 17, 341-350.	3.6	24
18	Exocrine Gland Morphogenesis: Insights into the Role of Amphiregulin from Development to Disease. Archivum Immunologiae Et Therapiae Experimentalis, 2017, 65, 477-499.	2.3	8

#	Article	IF	CITATIONS
19	Abnormal distribution of AQP4 in minor salivary glands of primary Sjögren's syndrome patients. Autoimmunity, 2017, 50, 202-210.	2.6	17
20	Interleukin-15 as a potential new target in Sjögren's syndrome-associated inflammation. Pathology, 2016, 48, 602-607.	0.6	15
21	Downstream activation of NF-κB in the EDA-A1/EDAR signalling in Sjögren's syndrome and its regulation by the ubiquitin-editing enzyme A20. Clinical and Experimental Immunology, 2016, 184, 183-196.	2.6	14
22	Co-culture system of human salivary gland epithelial cells and immune cells from primary Sjögren's syndrome patients: an in vitro approach to study the effects of Rituximab on the activation of the Raf-1/ERK1/2 pathway. International Immunology, 2015, 27, 183-194.	4.0	10
23	New Insights Into ADAMs Regulation of the GRO-α/CXCR2 System: Focus on Sjögren's Syndrome. International Reviews of Immunology, 2015, 34, 486-499.	3.3	4
24	The metalloproteinase ADAM17 and the epidermal growth factor receptor (EGFR) signaling drive the inflammatory epithelial response in Sjögren's syndrome. Clinical and Experimental Medicine, 2015, 15, 215-225.	3.6	16
25	Neovascularization is prominent in the chronic inflammatory lesions of Sjögren's syndrome. International Journal of Experimental Pathology, 2014, 95, 131-137.	1.3	24
26	Rituximabâ€mediated Raf kinase inhibitor protein induction modulates NFâ€ <i>κ</i> B in Sjögren syndrome. Immunology, 2014, 143, 42-51.	4.4	16
27	Chronic inflammation enhances NGF-β/TrkA system expression via EGFR/MEK/ERK pathway activation in Sjögren's syndrome. Journal of Molecular Medicine, 2014, 92, 523-37.	3.9	14
28	ADAM17 at the interface between inflammation and autoimmunity. Immunology Letters, 2014, 162, 159-169.	2.5	62
29	Salivary gland expression level of lκBα regulatory protein in Sjögren's syndrome. Journal of Molecular Histology, 2013, 44, 447-454.	2.2	14
30	A potential role of the GRO-α/CXCR2 system in Sjögren's syndrome: regulatory effects of pro-inflammatory cytokines. Histochemistry and Cell Biology, 2013, 139, 371-379.	1.7	18
31	Emerging avenues linking inflammation, angiogenesis and Sjögren's syndrome. Cytokine, 2013, 61, 693-703.	3.2	28
32	GRO-α/CXCR2 System and ADAM17 Correlated Expression in Sjögren's Syndrome. Inflammation, 2013, 36, 759-766.	3.8	9
33	Sjögren's syndrome autoantibodies provoke changes in gene expression profiles of inflammatory cytokines triggering a pathway involving TACE/NF-ήB. Laboratory Investigation, 2012, 92, 615-624.	3.7	57
34	Sjögren's syndrome pathological neovascularization is regulated by VEGF-A-stimulated TACE-dependent crosstalk between VEGFR2 and NF-κB. Genes and Immunity, 2012, 13, 411-420.	4.1	40
35	Altered IkBα expression promotes NF-kB activation in monocytes from primary Sj¶gren's syndrome patients. Pathology, 2012, 44, 557-561.	0.6	33
36	Possible Role of Oral Ibandronate Administration in Osteonecrosis of the Jaw: A Case Report. International Journal of Immunopathology and Pharmacology, 2012, 25, 311-316.	2.1	4

#	Article	IF	CITATIONS
37	Saponins from Tribulus terrestris L. protect human keratinocytes from UVB-induced damage. Journal of Photochemistry and Photobiology B: Biology, 2012, 117, 193-201.	3.8	22
38	Neuropilin-1 is upregulated in Sjögren's syndrome and contributes to pathological neovascularization. Histochemistry and Cell Biology, 2012, 137, 669-677.	1.7	22
39	Anti-Ro and anti-La autoantibodies induce TNF-α production by human salivary gland cells: an in vitro study. Reumatismo, 2011, 59, 221-6.	0.9	8
40	A failure of TNFAIP3 negative regulation maintains sustained NF-κB activation in Sjögren's syndrome. Histochemistry and Cell Biology, 2011, 135, 615-625.	1.7	47
41	Advances in the understanding of the Fc gamma receptors-mediated autoantibodies uptake. Clinical and Experimental Medicine, 2011, 11, 1-10.	3.6	22
42	Evidence for endogenous retroviruses in human chemokine receptor gene introns: possible evolutionary inferences and biological roles. Immunopharmacology and Immunotoxicology, 2011, 33, 291-301.	2.4	0
43	An analysis of the human and mouse CXCR5 gene introns. Immunopharmacology and Immunotoxicology, 2011, 33, 342-346.	2.4	2
44	Expression of pro-inflammatory TACE-TNF-α-amphiregulin axis in Sjögren's syndrome salivary glands. Histochemistry and Cell Biology, 2010, 134, 345-353.	1.7	34
45	Regulation of mRNA caspase-8 levels by anti-nuclear autoantibodies. Clinical and Experimental Medicine, 2010, 10, 199-203.	3.6	18
46	Effects of biological drug adalimumab on tumour necrosis factorâ€Î±â€€onverting enzyme activation. Immunology and Cell Biology, 2010, 88, 297-304.	2.3	10
47	Blockade of TNF-α signaling suppresses the AREG-mediated IL-6 and IL-8 cytokines secretion induced by anti-Ro/SSA autoantibodies. Laboratory Investigation, 2010, , .	3.7	2
48	Molecular identification of Mycobacterium avium subspecies paratuberculosis in an Italian patient with Hashimoto's thyroiditis and Melkersson–Rosenthal syndrome. Journal of Medical Microbiology, 2010, 59, 137-139.	1.8	43
49	Proposing a relationship between Mycobacterium avium subspecies paratuberculosis infection and Hashimoto's thyroiditis. Scandinavian Journal of Infectious Diseases, 2010, 42, 787-790.	1.5	40
50	TNF blocker drugs modulate human TNF-α-converting enzyme pro-domain shedding induced by autoantibodies. Immunobiology, 2010, 215, 874-883.	1.9	11
51	Pro-inflammatory role of Anti-Ro/SSA autoantibodies through the activation of Furin–TACE–amphiregulin axis. Journal of Autoimmunity, 2010, 35, 160-170.	6.5	44
52	Fibulin-6 expression and anoikis in human salivary gland epithelial cells: implications in Sjogren's syndrome. International Immunology, 2009, 21, 303-311.	4.0	13
53	Antiâ€Ro/SSA autoantibodyâ€mediated regulation of extracellular matrix fibulins in human epithelial cells of the salivary gland. Scandinavian Journal of Rheumatology, 2009, 38, 198-206.	1.1	11
54	Mutation, Selection and the Amino Acid Hydropathic Character: A Study on Receptor Genes Involved in Immune and Non-Immune Functions. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2009, 9, 47-66.	1.2	0

#	Article	IF	CITATIONS
55	Induction of TNF-alpha-converting enzyme-ectodomain shedding by pathogenic autoantibodies. International Immunology, 2009, 21, 1341-1349.	4.0	13
56	Tumor Necrosis Factor Inhibitors Block Apoptosis of Human Epithelial Cells of the Salivary Glands. Annals of the New York Academy of Sciences, 2009, 1171, 407-414.	3.8	33
57	An analysis of the human chemokine CXC receptor 4 gene. Immunopharmacology and Immunotoxicology, 2009, 31, 88-93.	2.4	1
58	Modulation of the FcÎ ³ receptors induced by anti-Ro and anti-La autoantibodies: observations in salivary gland cells. Rheumatology International, 2008, 28, 943-948.	3.0	11
59	Selective TNF-ALPHA Gene Silencing Attenuates Apoptosis in Human Salivary Gland Epithelial Cells. International Journal of Immunopathology and Pharmacology, 2008, 21, 1045-1047.	2.1	11
60	Hashimoto's thyroiditis in Melkersson-Rosenthal syndrome patient: casual association or related diseases?. Panminerva Medica, 2008, 50, 255-7.	0.8	9
61	Formyl Peptide Receptors on Immune and Nonimmune Cells: Analysis of Sequence Conservation in FPR Genes. Immunopharmacology and Immunotoxicology, 2007, 29, 243-269.	2.4	8
62	Formyl Peptide Receptor Expression in Birds. Immunopharmacology and Immunotoxicology, 2007, 29, 1-16.	2.4	14
63	Modeling of Granulocyte Cytoskeletal Responses Following fMLP Challenging. Immunopharmacology and Immunotoxicology, 2007, 29, 201-224.	2.4	1
64	Fcγ receptors mediate internalization of antiâ€Ro and anti‣a autoantibodies from Sjögren's syndrome and apoptosis in human salivary gland cell line Aâ€253. Journal of Oral Pathology and Medicine, 2007, 36, 511-523.	2.7	40
65	Autoantibodies from Sjögren's Syndrome Trigger Apoptosis in Salivary Gland Cell Line. Annals of the New York Academy of Sciences, 2007, 1108, 418-425.	3.8	30
66	Siögren's syndrome: anti-Ro and anti-La autoantibodies trigger apoptotic mechanism in the human salivary gland cell line, A-253. Panminerva Medica, 2007, 49, 103-8.	0.8	4
67	Biological Role of the N-Formyl Peptide Receptors. Immunopharmacology and Immunotoxicology, 2006, 28, 103-127.	2.4	72
68	The 18S rRNA is Basically Composed of Two Tandem Quasirepeats. Insights into the Evolution of Some Innate Immunity Receptors. Immunopharmacology and Immunotoxicology, 2006, 28, 651-663.	2.4	2
69	Autoantibodies from Sjögren's syndrome induce activation of both the intrinsic and extrinsic apoptotic pathways in human salivary gland cell line A-253. Journal of Autoimmunity, 2006, 27, 38-49.	6.5	56
70	Evolution of a "Conserved" Amino Acid Sequence: a Model Study of an In Silico Investigation of the Phylogenesis of Some Immune Receptors. Current Pharmaceutical Design, 2006, 12, 4091-4121.	1.9	13
71	Chemokine CXC Receptor 4: An Evolutionary Approach. Immunopharmacology and Immunotoxicology, 2006, 28, 715-738.	2.4	5
72	Polimorphonuclear Cell-Mediated Oxidative Stress: Sink for Reactive Oxygen Species and Cell Various Type Damage. Immunopharmacology and Immunotoxicology, 2006, 28, 153-164.	2.4	2

#	Article	IF	CITATIONS
73	Infection with <i>Leishmania infantum</i> Inhibits Actinomycin Dâ€Induced Apoptosis of Human Monocytic Cell Line Uâ€937. Journal of Eukaryotic Microbiology, 2005, 52, 211-217.	1.7	43
74	Structural Similarities Between mRNA for the Formyl Peptide Receptors and 18S rRNA. Immunopharmacology and Immunotoxicology, 2005, 27, 267-284.	2.4	4
75	Reduced expression of the chemokine receptor CCR1 in human macrophages and U-937 cells in vitro infected with Leishmania infantum. Clinical and Experimental Medicine, 2004, 3, 225-230.	3.6	9
76	Macrophage chemotactic protein-1 and macrophage inflammatory protein-1 alpha induce nitric oxide release and enhance parasite killing in Leishmania infantum-infected human macrophages. Clinical and Experimental Medicine, 2002, 2, 125-129.	3.6	55
77	Nitric oxide production by Leishmania -infected macrophages and modulation by prostaglandin E 2. Clinical and Experimental Medicine, 2001, 1, 137-143.	3.6	25
78	Nitric oxide production by macrophages of dogs vaccinated with killed Leishmania infantum promastigotes. Comparative Immunology, Microbiology and Infectious Diseases, 2001, 24, 187-195.	1.6	41
79	Inducible nitric oxide synthase expression in Leishmania-infected dog macrophages. Comparative Immunology, Microbiology and Infectious Diseases, 2001, 24, 247-254.	1.6	26
80	Interactions between Leishmania parasites and host cells. Parassitologia, 2000, 42, 183-90.	0.5	7