
Victoria B Risbrough

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1603660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nature Communications, 2019, 10, 4558.	12.8	363
2	Corticotropin Releasing Factor (CRF) Receptor Signaling in the Central Nervous System: New Molecular Targets. CNS and Neurological Disorders - Drug Targets, 2006, 5, 453-479.	1.4	300
3	Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. , 2009, 122, 150-202.		285
4	Role of corticotropin releasing factor in anxiety disorders: A translational research perspective. Hormones and Behavior, 2006, 50, 550-561.	2.1	209
5	Current Status of Animal Models of Posttraumatic Stress Disorder: Behavioral and Biological Phenotypes, and Future Challenges in Improving Translation. Biological Psychiatry, 2018, 83, 895-907.	1.3	195
6	Traumatic stress and accelerated DNA methylation age: A meta-analysis. Psychoneuroendocrinology, 2018, 92, 123-134.	2.7	190
7	Role of CRF Receptor Signaling in Stress Vulnerability, Anxiety, and Depression. Annals of the New York Academy of Sciences, 2009, 1179, 120-143.	3.8	185
8	Hippocampal dysfunction effects on context memory: Possible etiology for posttraumatic stress disorder. Neuropharmacology, 2012, 62, 674-685.	4.1	171
9	Impaired Sensorimotor Gating in Unmedicated Adults with Obsessive–Compulsive Disorder. Neuropsychopharmacology, 2012, 37, 1216-1223.	5.4	166
10	Pharmacological treatment of PTSD – Established and new approaches. Neuropharmacology, 2012, 62, 617-627.	4.1	161
11	Genomic predictors of combat stress vulnerability and resilience in U.S. Marines: A genome-wide association study across multiple ancestries implicates PRTFDC1 as a potential PTSD gene. Psychoneuroendocrinology, 2015, 51, 459-471.	2.7	147
12	5-HT2A and 5-HT2C Receptors Exert Opposing Effects on Locomotor Activity in Mice. Neuropsychopharmacology, 2009, 34, 1958-1967.	5.4	127
13	A consideration of select pre-trauma factors as key vulnerabilities in PTSD. Clinical Psychology Review, 2012, 32, 630-641.	11.4	123
14	Corticotropin-Releasing Factor Receptors CRF ₁ and CRF ₂ Exert Both Additive and Opposing Influences on Defensive Startle Behavior. Journal of Neuroscience, 2004, 24, 6545-6552.	3.6	122
15	The effect of intranasal oxytocin treatment on conditioned fear extinction and recall in a healthy human sample. Psychopharmacology, 2013, 229, 199-208.	3.1	122
16	Association of Predeployment Heart Rate Variability With Risk of Postdeployment Posttraumatic Stress Disorder in Active-Duty Marines. JAMA Psychiatry, 2015, 72, 979.	11.0	117
17	Differential Contributions of Dopamine D1, D2, and D3 Receptors to MDMA-Induced Effects on Locomotor Behavior Patterns in Mice. Neuropsychopharmacology, 2006, 31, 2349-2358.	5.4	108
18	Role of corticotropin releasing factor (CRF) receptors 1 and 2 in CRF-potentiated acoustic startle in mice. Psychopharmacology, 2003, 170, 178-187.	3.1	103

#	Article	IF	CITATIONS
19	Genetic loci associated with heart rate variability and their effects on cardiac disease risk. Nature Communications, 2017, 8, 15805.	12.8	95
20	PTSD Blood Transcriptome Mega-Analysis: Shared Inflammatory Pathways across Biological Sex and Modes of Trauma. Neuropsychopharmacology, 2018, 43, 469-481.	5.4	92
21	The Relationship Between Chronic Pain and Neurocognitive Function. Clinical Journal of Pain, 2018, 34, 262-275.	1.9	90
22	Anxiogenic-Like Effects of Spontaneous and Naloxone-Precipitated Opiate Withdrawal in the Elevated Plus-Maze. Pharmacology Biochemistry and Behavior, 1998, 60, 727-731.	2.9	85
23	Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury. NeuroImage: Clinical, 2014, 5, 109-119.	2.7	85
24	Epigenome-wide meta-analysis of PTSD across 10 military and civilian cohorts identifies methylation changes in AHRR. Nature Communications, 2020, 11, 5965.	12.8	84
25	Heart Rate Variability Characteristics in a Large Group of Active-Duty Marines and Relationship to Posttraumatic Stress. Psychosomatic Medicine, 2014, 76, 292-301.	2.0	80
26	Assessing Neuronal and Astrocyte Derived Exosomes From Individuals With Mild Traumatic Brain Injury for Markers of Neurodegeneration and Cytotoxic Activity. Frontiers in Neuroscience, 2019, 13, 1005.	2.8	76
27	Fear Conditioning, Safety Learning, and Sleep in Humans. Journal of Neuroscience, 2014, 34, 11754-11760.	3.6	72
28	Predictors of Risk and Resilience for Posttraumatic Stress Disorder Among Ground Combat Marines: Methods of the Marine Resiliency Study. Preventing Chronic Disease, 2012, 9, E97.	3.4	66
29	Cognitive Enhancing Properties and Tolerability of Cholinergic Agents in Mice: A Comparative Study of Nicotine, Donepezil, and SIB-1553A, a Subtype-Selective Ligand for Nicotinic Acetylcholine Receptors. Neuropsychopharmacology, 2003, 28, 1235-1246.	5.4	65
30	The mouse attentional-set-shifting task: A method for assaying successful cognitive aging?. Cognitive, Affective and Behavioral Neuroscience, 2010, 10, 243-251.	2.0	65
31	An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci. Clinical Epigenetics, 2020, 12, 46.	4.1	64
32	Voxel-wise resting-state MEG source magnitude imaging study reveals neurocircuitry abnormality in active-duty service members and veterans with PTSD. NeuroImage: Clinical, 2014, 5, 408-419.	2.7	62
33	Posttraumatic Stress Disorder and Cardiovascular Disease. JAMA Cardiology, 2021, 6, 1207.	6.1	61
34	CRF receptor blockade prevents initiation and consolidation of stress effects on affect in the predator stress model of PTSD. International Journal of Neuropsychopharmacology, 2010, 13, 747-757.	2.1	58
35	Selective immunolesioning of the basal forebrain cholinergic neurons in rats: effect on attention using the 5-choice serial reaction time task. Psychopharmacology, 2002, 164, 71-81.	3.1	56
36	GABA-A and 5-HT1A Receptor Agonists Block Expression of Fear-Potentiated Startle in Mice. Neuropsychopharmacology, 2003, 28, 654-663.	5.4	56

#	Article	lF	CITATIONS
37	Conditioned fear and extinction learning performance and its association with psychiatric symptoms in active duty Marines. Psychoneuroendocrinology, 2015, 51, 495-505.	2.7	54
38	Measuring novel antecedents of mental illness: the Questionnaire of Unpredictability in Childhood. Neuropsychopharmacology, 2019, 44, 876-882.	5.4	52
39	Neuron-Targeted Caveolin-1 Improves Molecular Signaling, Plasticity, and Behavior Dependent on the Hippocampus in Adult and Aged Mice. Biological Psychiatry, 2017, 81, 101-110.	1.3	51
40	Sleep deprivation impairs performance in the 5-choice continuous performance test: Similarities between humans and mice. Behavioural Brain Research, 2014, 261, 40-48.	2.2	49
41	CRF1 and CRF2 Receptors are Required for Potentiated Startle to Contextual but not Discrete Cues. Neuropsychopharmacology, 2009, 34, 1494-1503.	5.4	47
42	Genomic influences on self-reported childhood maltreatment. Translational Psychiatry, 2020, 10, 38.	4.8	47
43	Comparison of the effects of the GABAB receptor positive modulator BHF177 and the GABAB receptor agonist baclofen on anxiety-like behavior, learning, and memory in mice. Neuropharmacology, 2013, 70, 156-167.	4.1	46
44	Longitudinal epigenome-wide association studies of three male military cohorts reveal multiple CpG sites associated with post-traumatic stress disorder. Clinical Epigenetics, 2020, 12, 11.	4.1	45
45	Resting-State Magnetoencephalography Reveals Different Patterns of Aberrant Functional Connectivity in Combat-Related Mild Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 1412-1426.	3.4	44
46	Analysis of Genetically Regulated Gene Expression Identifies a Prefrontal PTSD Gene, SNRNP35, Specific to Military Cohorts. Cell Reports, 2020, 31, 107716.	6.4	44
47	Post-traumatic stress disorder: emerging concepts of pharmacotherapy. Expert Opinion on Emerging Drugs, 2009, 14, 251-272.	2.4	43
48	Modification of the effects of 5-methoxy-N,N-dimethyltryptamine on exploratory behavior in rats by monoamine oxidase inhibitors. Psychopharmacology, 2008, 201, 55-66.	3.1	42
49	Isolation rearing-induced deficits in contextual fear learning do not require CRF2 receptors. Behavioural Brain Research, 2010, 209, 80-84.	2.2	42
50	Generation and Characterization of Humanized Mice Carrying COMT158 Met/Val Alleles. Neuropsychopharmacology, 2014, 39, 1823-1832.	5.4	42
51	Immune signaling mechanisms of PTSD risk and symptom development: insights from animal models. Current Opinion in Behavioral Sciences, 2017, 14, 123-132.	3.9	41
52	Spontaneous Nicotine Withdrawal Potentiates the Effects of Stress in Rats. Neuropsychopharmacology, 2008, 33, 2131-2138.	5.4	40
53	Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT1A receptor knockout mice: Implications for schizophrenia. Neuropharmacology, 2011, 61, 209-216.	4.1	39
54	INTRANASAL OXYTOCIN ADMINISTRATION PRIOR TO EXPOSURE THERAPY FOR ARACHNOPHOBIA IMPEDES TREATMENT RESPONSE. Depression and Anxiety, 2015, 32, 400-407.	4.1	39

#	Article	IF	CITATIONS
55	Anxiogenic treatments do not increase fear-potentiated startle in mice. Biological Psychiatry, 2005, 57, 33-43.	1.3	38
56	Impaired conditioned fear response and startle reactivity in epinephrine-deficient mice. Behavioural Pharmacology, 2013, 24, 1-9.	1.7	36
57	Pavlovian conditioning to hedonic food cues in overweight and lean individuals. Appetite, 2015, 87, 56-61.	3.7	36
58	Sleep Deprivation Disrupts Recall of Conditioned Fear Extinction. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2017, 2, 123-129.	1.5	36
59	Short-Term Recognition Memory Correlates with Regional CNS Expression of microRNA-138 in Mice. American Journal of Geriatric Psychiatry, 2013, 21, 461-473.	1.2	35
60	Overexpression of Forebrain CRH During Early Life Increases Trauma Susceptibility in Adulthood. Neuropsychopharmacology, 2016, 41, 1681-1690.	5.4	33
61	Initial evidence linking synaptic superoxide production with poor short-term memory in aged mice. Brain Research, 2011, 1368, 65-70.	2.2	32
62	Hippocampal calbindin-1 immunoreactivity correlate of recognition memory performance in aged mice. Neuroscience Letters, 2012, 516, 161-165.	2.1	32
63	Molecular genetic overlap between posttraumatic stress disorder and sleep phenotypes. Sleep, 2020, 43, .	1.1	32
64	Clonidine Blocks Acquisition But not Expression of Conditioned Opiate Withdrawal in Rats. Neuropsychopharmacology, 1998, 19, 406-416.	5.4	31
65	Heart rate variability and emotion regulation among individuals with obesity and loss of control eating. Physiology and Behavior, 2019, 199, 73-78.	2.1	31
66	The effects of FAAH inhibition on the neural basis of anxiety-related processing in healthy male subjects: a randomized clinical trial. Neuropsychopharmacology, 2021, 46, 1011-1019.	5.4	31
67	Forebrain-Specific CRF Overproduction During Development is Sufficient to Induce Enduring Anxiety and Startle Abnormalities in Adult Mice. Neuropsychopharmacology, 2014, 39, 1409-1419.	5.4	28
68	Age-associated improvements in cross-modal prepulse inhibition in mice Behavioral Neuroscience, 2010, 124, 133-140.	1.2	27
69	Effects of LPS-induced immune activation prior to trauma exposure on PTSD-like symptoms in mice. Behavioural Brain Research, 2017, 323, 117-123.	2.2	27
70	Fear learning alterations after traumatic brain injury and their role in development of posttraumatic stress symptoms. Depression and Anxiety, 2017, 34, 723-733.	4.1	27
71	Effects of military service and deployment on clinical symptomatology: The role of trauma exposure and social support. Journal of Psychiatric Research, 2017, 95, 121-128.	3.1	25
72	Does Anhedonia Presage Increased Risk of Posttraumatic Stress Disorder?. Current Topics in Behavioral Neurosciences, 2018, 38, 249-265.	1.7	25

#	Article	IF	CITATIONS
73	REM sleep and safety signal learning in posttraumatic stress disorder: A preliminary study in military veterans. Neurobiology of Stress, 2018, 9, 22-28.	4.0	25
74	Corticotropin-releasing factor and noradrenergic signalling exert reciprocal control over startle reactivity. International Journal of Neuropsychopharmacology, 2011, 14, 1179-1194.	2.1	24
75	Patients with premenstrual dysphoric disorder have increased startle modulation during anticipation in the late luteal phase period in comparison to control subjects. Psychoneuroendocrinology, 2011, 36, 1184-1192.	2.7	24
76	Long-term atorvastatin treatment leads to alterations in behavior, cognition, and hippocampal biochemistry. Behavioural Brain Research, 2014, 267, 6-11.	2.2	24
77	Common pathways and communication between the brain and heart: connecting post-traumatic stress disorder and heart failure. Stress, 2019, 22, 530-547.	1.8	22
78	Role of inflammation in TBI-associated risk for neuropsychiatric disorders: state of the evidence and where do we go from here. Biological Psychiatry, 2021, , .	1.3	22
79	Inhibition of phosphodiesterase 10A has differential effects on dopamine D1 and D2 receptor modulation of sensorimotor gating. Psychopharmacology, 2014, 231, 2189-2197.	3.1	21
80	Impact of TBI, PTSD, and Hearing Loss on Tinnitus Progression in a US Marine Cohort. Military Medicine, 2019, 184, 839-846.	0.8	21
81	Concordant neurophysiological signatures of cognitive control in humans and rats. Neuropsychopharmacology, 2021, 46, 1252-1262.	5.4	21
82	Enhancing Discovery of Genetic Variants for Posttraumatic Stress Disorder Through Integration of Quantitative Phenotypes and Trauma Exposure Information. Biological Psychiatry, 2022, 91, 626-636.	1.3	21
83	Epigenome-wide meta-analysis of PTSD symptom severity in three military cohorts implicates DNA methylation changes in genes involved in immune system and oxidative stress. Molecular Psychiatry, 2022, 27, 1720-1728.	7.9	21
84	The GABAB receptor positive modulator BHF177 attenuated anxiety, but not conditioned fear, in rats. Neuropharmacology, 2015, 97, 357-364.	4.1	20
85	PREPULSE INHIBITION DEFICITS ONLY IN FEMALES WITH OBSESSIVE-COMPULSIVE DISORDER. Depression and Anxiety, 2016, 33, 238-246.	4.1	20
86	Câ€Reactive Protein: Marker of risk for postâ€traumatic stress disorder and its potential for a mechanistic role in trauma response and recovery. European Journal of Neuroscience, 2022, 55, 2297-2310.	2.6	20
87	Role of dopamine D1 and D2 receptors in CRF-induced disruption of sensorimotor gating. Pharmacology Biochemistry and Behavior, 2007, 86, 550-558.	2.9	19
88	Behavioral Correlates of Anxiety. Current Topics in Behavioral Neurosciences, 2009, 2, 205-228.	1.7	18
89	Effects of anxiolytic treatment on potentiated startle during aversive image anticipation. Human Psychopharmacology, 2012, 27, 419-427.	1.5	18
90	Contribution of earlyâ€life unpredictability to neuropsychiatric symptom patterns in adulthood. Depression and Anxiety, 2022, 39, 706-717.	4.1	18

#	Article	IF	CITATIONS
91	The effects of globin on microarray-based gene expression analysis of mouse blood. Mammalian Genome, 2010, 21, 268-275.	2.2	17
92	On the Road to Translation for PTSD Treatment: Theoretical and Practical Considerations of the Use of Human Models of Conditioned Fear for Drug Development. Current Topics in Behavioral Neurosciences, 2015, 28, 173-196.	1.7	17
93	Sleep disturbance at pre-deployment is a significant predictor of post-deployment re-experiencing symptoms. Högre Utbildning, 2019, 10, 1679964.	3.0	17
94	Systematic Review and Methodological Considerations for the Use of Single Prolonged Stress and Fear Extinction Retention in Rodents. Frontiers in Behavioral Neuroscience, 2021, 15, 652636.	2.0	17
95	Disruption of prepulse inhibition by 3,4-methylenedioxymethamphetamine (MDMA): comparison between male and female wild-type and 5-HT1A receptor knockout mice. International Journal of Neuropsychopharmacology, 2011, 14, 856-861.	2.1	16
96	The effect of pregabalin on sensorimotor gating in â€~low' gating humans and mice. Neuropharmacology, 2012, 63, 480-485.	4.1	16
97	Maximizing the utility of a single site randomized controlled psychotherapy trial. Contemporary Clinical Trials, 2015, 42, 244-251.	1.8	16
98	Design and implementation of a study evaluating extinction processes to food cues in obese children: The Intervention for Regulations of Cues Trial (iROC). Contemporary Clinical Trials, 2015, 40, 95-104.	1.8	16
99	Prepulse Inhibition Deficits in Obsessive-Compulsive Disorder are More Pronounced in Females. Neuropsychopharmacology, 2016, 41, 2963-2964.	5.4	16
100	A signal detection–item response theory model for evaluating neuropsychological measures. Journal of Clinical and Experimental Neuropsychology, 2018, 40, 745-760.	1.3	16
101	Potential use of animal models to examine antipsychotic prophylaxis for schizophrenia. Clinical Neuroscience Research, 2003, 3, 289-296.	0.8	15
102	Decreased startle modulation during anticipation in the postpartum period in comparison to late pregnancy. Archives of Women's Mental Health, 2012, 15, 87-94.	2.6	15
103	HIGH AND LOW THRESHOLD FOR STARTLE REACTIVITY ASSOCIATED WITH PTSD SYMPTOMS BUT NOT PTSD RISK: EVIDENCE FROM A PROSPECTIVE STUDY OF ACTIVE DUTY MARINES. Depression and Anxiety, 2016, 33, 192-202.	4.1	15
104	Multimodal canonical correlation reveals converging neural circuitry across trauma-related disorders of affect and cognition. Neurobiology of Stress, 2018, 9, 241-250.	4.0	15
105	Prospective Associations Between Traumatic Brain Injury and Postdeployment Tinnitus in Active-Duty Marines. Journal of Head Trauma Rehabilitation, 2016, 31, 30-39.	1.7	14
106	Neural measures associated with configural threat acquisition. Neurobiology of Learning and Memory, 2018, 150, 99-106.	1.9	14
107	COMT val158met polymorphism links to altered fear conditioning and extinction are modulated by PTSD and childhood trauma. Depression and Anxiety, 2018, 35, 32-42.	4.1	14
108	Individual variation in working memory is associated with fear extinction performance. Behaviour Research and Therapy, 2018, 102, 52-59.	3.1	13

#	Article	IF	CITATIONS
109	Kainate receptor auxiliary subunit NETO2 is required for normal fear expression and extinction. Neuropsychopharmacology, 2019, 44, 1855-1866.	5.4	13
110	Angiotensin II Signaling and Fear Extinction: Translational Evidence and Novel Receptor Targets. Biological Psychiatry, 2019, 86, 874-876.	1.3	13
111	Reelin deficiency contributes to long-term behavioral abnormalities induced by chronic adolescent exposure to Δ9-tetrahydrocannabinol in mice. Neuropharmacology, 2021, 187, 108495.	4.1	13
112	Anhedonia in Posttraumatic Stress Disorder: Prevalence, Phenotypes, and Neural Circuitry. Current Topics in Behavioral Neurosciences, 2022, , 185-199.	1.7	13
113	The role of PKC signaling in CRF-induced modulation of startle. Psychopharmacology, 2013, 229, 579-589.	3.1	12
114	Cell type-specific modifications of corticotropin-releasing factor (CRF) and its type 1 receptor (CRF1) on startle behavior and sensorimotor gating. Psychoneuroendocrinology, 2015, 53, 16-28.	2.7	12
115	Effects of 3,4-Methylenedioxymethamphetamine on Conditioned Fear Extinction and Retention in a Crossover Study in Healthy Subjects. Frontiers in Pharmacology, 0, 13, .	3.5	12
116	Fear extinction memory performance in a sample of stable, euthymic patients with bipolar disorder. Journal of Affective Disorders, 2015, 185, 230-238.	4.1	11
117	The Future of Contextual Fear Learning for PTSD Research: A Methodological Review of Neuroimaging Studies. Current Topics in Behavioral Neurosciences, 2017, 38, 207-228.	1.7	11
118	Aversive distractors modulate affective working memory in frontoparietal regions Emotion, 2020, 20, 286-295.	1.8	11
119	Factor analysis of attentional set-shifting performance in young and aged mice. Behavioral and Brain Functions, 2011, 7, 33.	3.3	10
120	The ameliorating effects of 5,7-dihydroxy-6-methoxy-2(4-phenoxyphenyl)-4H-chromene-4-one, an oroxylin A derivative, against memory impairment and sensorimotor gating deficit in mice. Archives of Pharmacal Research, 2013, 36, 854-863.	6.3	10
121	Examining Individual and Synergistic Contributions of PTSD and Genetics to Blood Pressure: A Trans-Ethnic Meta-Analysis. Frontiers in Neuroscience, 2021, 15, 678503.	2.8	10
122	Developing Biomarkers of Mild Traumatic Brain Injury: Promise and Progress of CNS-Derived Exosomes. Frontiers in Neurology, 2021, 12, 698206.	2.4	10
123	CRF2 null mutation increases sensitivity to isolation rearing effects on locomotor activity in mice. Neuropeptides, 2010, 44, 349-353.	2.2	9
124	5-HT1A receptor activation is necessary for 5-MeODMT-dependent potentiation of feeding inhibition. Pharmacology Biochemistry and Behavior, 2009, 93, 349-353.	2.9	8
125	Localization of amyloid beta peptides to locus coeruleus and medial prefrontal cortex in corticotropin releasing factor overexpressing male and female mice. Brain Structure and Function, 2019, 224, 2385-2405.	2.3	8
126	Kainate Receptor Auxiliary Subunit NETO2-Related Cued Fear Conditioning Impairments Associate with Defects in Amygdala Development and Excitability. ENeuro, 2020, 7, ENEURO.0541-19.2020.	1.9	8

Victoria B Risbrough

#	Article	IF	CITATIONS
127	Chronic presence of blood circulating anti-NMDAR1 autoantibodies impairs cognitive function in mice. PLoS ONE, 2021, 16, e0256972.	2.5	7
128	Dissociable impact of childhood trauma and deployment trauma on affective modulation of startle. Neurobiology of Stress, 2021, 15, 100362.	4.0	7
129	Characterizing the neural circuitry associated with configural threat learning. Brain Research, 2019, 1719, 225-234.	2.2	6
130	Oxytocin Enhancement of Fear Extinction: A New Target for Facilitating Exposure-Based Treatments?. Biological Psychiatry, 2015, 78, 154-155.	1.3	5
131	Heritable Differences in Catecholamine Signaling Modulate Susceptibility to Trauma and Response to Methylphenidate Treatment: Relevance for PTSD. Frontiers in Behavioral Neuroscience, 2019, 13, 111.	2.0	5
132	Restoration of <i>Sp4</i> in Forebrain GABAergic Neurons Rescues Hypersensitivity to Ketamine in <i>Sp4</i> Hypomorphic Mice. International Journal of Neuropsychopharmacology, 2015, 18, pyv063.	2.1	4
133	Effects of modafinil on electroencephalographic microstates in healthy adults. Psychopharmacology, 2022, 239, 2573-2584.	3.1	3
134	Prospective examination of pre-trauma anhedonia as a risk factor for post-traumatic stress symptoms. Högre Utbildning, 2022, 13, 2015949.	3.0	2
135	Heart Rate Variability and Posttraumatic Stress Disorder. JAMA Psychiatry, 2016, 73, 178.	11.0	0
136	291. Relationship between Sub-chronic C-Reactive Protein Exposure and Risk for Post Traumatic Stress Disorder. Biological Psychiatry, 2017, 81, S119-S120.	1.3	0
137	S1. Evaluating how CRP Effects Risk for PTSD-Like Behaviors in Trauma-Exposed Mice. Biological Psychiatry, 2019, 85, S297.	1.3	0
138	DTI-identified microstructural changes in the gray matter of mice overexpressing CRF in the forebrain. Psychiatry Research - Neuroimaging, 2020, 304, 111137.	1.8	0
139	Preclinical and Translational Methods to Evaluate Immune Dysregulation on Risk for Developing PTSD Symptoms. Biological Psychiatry, 2021, 89, S18.	1.3	0
140	Deriving psychiatric symptom-based biomarkers from multivariate relationships between psychophysiological and biochemical measures. Neuropsychopharmacology, 2022, , .	5.4	0
141	P666. Astrocyte-Derived Cargo Cytokines From Extracellular-Vesicles Correlate With Anhedonia in Veterans With and Without PTSD. Biological Psychiatry, 2022, 91, S359-S360.	1.3	Ο