
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1603527/publications.pdf Version: 2024-02-01

RIN DENC

#	Article	IF	CITATIONS
1	Complete head cerebral sensitivity mapping for diffuse correlation spectroscopy using subject-specific magnetic resonance imaging models. Biomedical Optics Express, 2022, 13, 1131.	2.9	16
2	The Efficiency of Normal Distribution in Statistical Characterization of the Experimentally Measured Strength for Ceramics. Journal of Materials Engineering and Performance, 2021, 30, 42-55.	2.5	3
3	Improved accuracy of cerebral blood flow quantification in the presence of systemic physiology cross-talk using multi-layer Monte Carlo modeling. Neurophotonics, 2021, 8, 015001.	3.3	33
4	Self-calibration of area function for mechanical property determination with nanoindentation tests. Journal of Materials Science, 2020, 55, 16002-16017.	3.7	7
5	Treatment Response Monitoring with Diffuse Optical Tomography-Based Multimodal Breast Imaging. , 2020, , .		0
6	Mechanical and hemodynamic responses of breast tissue under mammographic-like compression during functional dynamic optical imaging. Biomedical Optics Express, 2020, 11, 5425.	2.9	3
7	Description of the statistical variations of the measured strength for brittle ceramics: A comparison between two-parameter Weibull distribution and normal distribution. Processing and Application of Ceramics, 2020, 14, 293-302.	0.8	2
8	Impact of errors in experimental parameters on reconstructed breast images using diffuse optical tomography. Biomedical Optics Express, 2018, 9, 1130.	2.9	10
9	Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis. Journal of Biomedical Optics, 2017, 22, 046008.	2.6	38
10	Effects of small-grit grinding and glazing on mechanical behaviors and ageing resistance of a super-translucent dental zirconia. Journal of Dentistry, 2017, 66, 23-31.	4.1	23
11	Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI). Biomedical Optics Express, 2017, 8, 555.	2.9	21
12	Involvement of autophagy in tantalum nanoparticle-induced osteoblast proliferation. International Journal of Nanomedicine, 2017, Volume 12, 4323-4333.	6.7	49
13	Effects of CBL Mode to Residency Training Doctor of Prosthodontics for Making Diagnosis and Treatment Plan. , 2017, , .		1
14	Bilingual Teaching Efficiency of Prosthodontics in Different Teaching Methods. , 2017, , .		0
15	Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Particle and Fibre Toxicology, 2016, 13, 57.	6.2	540
16	Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging. Journal of Biomedical Optics, 2015, 20, 080502.	2.6	12
17	Characterization of structural-prior guided optical tomography using realistic breast models derived from dual-energy x-ray mammography. Biomedical Optics Express, 2015, 6, 2366.	2.9	37
18	Effect of Background Color to the Final Color of Four Highly Transparent Ceramics after Veneered. Key Engineering Materials, 2015, 655, 122-125.	0.4	0

#	Article	IF	CITATIONS
19	Maresin Biosynthesis and Identification of Maresin 2, a New Anti-Inflammatory and Pro-Resolving Mediator from Human Macrophages. PLoS ONE, 2014, 9, e102362.	2.5	130
20	Comparative Measurement on Translucency of Four Systems of Dental All-Ceramic Zirconia Materials. Advanced Materials Research, 2013, 833, 181-184.	0.3	0
21	Effects of Alveolar Bone Loss and Post-Core Design on Stress Distribution of Severely Damaged Canine. Key Engineering Materials, 2012, 512-515, 1770-1774.	0.4	0
22	Bond Strength of Veneering Ceramics to a Graded Zirconia Core. Advanced Materials Research, 2012, 624, 221-225.	0.3	1
23	The Influence of Background Color to 3 All-Ceramic System Core Materials. Key Engineering Materials, 2012, 512-515, 1788-1792.	0.4	0
24	Masking Ability of IPS e.max ALL-Ceramics System of HO Series. Key Engineering Materials, 2012, 512-515, 1784-1787.	0.4	2
25	Comparing Study on Translucency of Four Veneered Dental All-Ceramic Core Materials. Advanced Materials Research, 2012, 624, 235-238.	0.3	0
26	Effect of Zirconia Surface Roughness on Shear Bond Strength to Resin Cements. Key Engineering Materials, 2012, 512-515, 1765-1769.	0.4	1
27	The Transmittance Test of 3 All-Ceramic System Core Materials. Key Engineering Materials, 2012, 512-515, 1793-1796.	0.4	0
28	Spectral Transmittance of Six All-Ceramic Core Materials after Veneering Ceramic. Advanced Materials Research, 2011, 412, 352-355.	0.3	0
29	Effect of Background Color on In-Ceram and Cercon All-Ceramic Core Material. Advanced Materials Research, 2011, 412, 356-360.	0.3	0
30	Influence of Multiple Firing on the Bending Strength of Zirconia/Porcelain Bilayered Dental Ceramics. Key Engineering Materials, 2011, 492, 24-29.	0.4	2
31	Biological Safety Assessment of a Colored Zirconia Ceramic: Cell Toxicity and Skin Sensitivity Tests. Key Engineering Materials, 2011, 492, 509-512.	0.4	0
32	Mechanical Properties of Y-TZP Ceramic after Different Surface Treatments. Key Engineering Materials, 2011, 492, 71-74.	0.4	2
33	Soak Colored Zirconia Ceramics and its Colorimetric Plate. Key Engineering Materials, 2011, 492, 362-365.	0.4	1
34	A New Type of Colored Alumina/Glass Composite Biological Safety Assessment - Oral Mucous Membrane Irritation and Skin Sensitivity Tests. Advanced Materials Research, 2010, 177, 462-465.	0.3	0
35	Test of Relative Translucency for Three Veneered All-Ceramic Systems Core Material. Advanced Materials Research, 2010, 177, 302-305.	0.3	2
36	Effects of Presintering Temperature and Heating Rate on the Physical and Mechanical Properties of Alumina-Glass-Composites. Advanced Materials Research, 2010, 105-106, 549-552.	0.3	0

#	Article	IF	CITATIONS
37	Influence of Background Material on 3 Veneered All-Ceramic Core Materials. Advanced Materials Research, 2010, 177, 293-297.	0.3	0
38	Influence of Different Ceric Oxide and Ferric Oxide Content on the Color of Alumina-Glass-Composites Restoration. Advanced Materials Research, 2010, 105-106, 536-538.	0.3	0
39	Study on Dental Colored Zirconia Restoration. Key Engineering Materials, 2008, 368-372, 1255-1257.	0.4	3
40	Strength and Fracture Mode for Dental Colored ZrO ₂ Ceramics Coated with Dental Porcelain. Key Engineering Materials, 2008, 368-372, 1248-1251.	0.4	2
41	Relative Translucency Test of 3 All-Ceramics System Core Material. Advanced Materials Research, 0, 177, 298-301.	0.3	4
42	Effects of Veneering Porcelain Type on Bending Strength of Dental Y-TZP/Porcelain Bilayered Structure. Advanced Materials Research, 0, 105-106, 524-527.	0.3	0
43	A New Type of Colored Alumina/Glass Composite Biological Safety Assessment – Cell Toxicity and Hemolysis Tests. Advanced Materials Research, 0, 177, 459-461.	0.3	0
44	Evaluation of Glass Infiltration Speed within Dental CAD/CAM Alumina at Different Temperatures. Advanced Materials Research, 0, 177, 314-317.	0.3	0
45	Binding Performance of a Zirconia Framework Material and Veneering Porcelain. Advanced Materials Research, 0, 177, 186-189.	0.3	4
46	Surface Microhardness and Flexural Strength of Colored Zirconia. Advanced Materials Research, 0, 105-106, 49-50.	0.3	12
47	Microstructure of Interface between Zirconia and Veneer Porcelain. Key Engineering Materials, 0, 492, 55-60.	0.4	1
48	Relative Translucency of IPS E.max LT Core Materials after Veneering and Glazing. Key Engineering Materials, 0, 492, 358-361.	0.4	3
49	Biological Safety Assessment of a Colored Zirconia Ceramic: Hemolysis and Short-Term Systemic Toxicity Tests. Key Engineering Materials, 0, 492, 505-508.	0.4	1
50	Contrast Ratios and Chromatic Value of IPS E.max LT Framework Materials. Key Engineering Materials, 0, 492, 354-357.	0.4	0
51	Measuring the Infinite Optical Thickness of Dentine Porcelain of the IPS E.max. Key Engineering Materials, 0, 492, 349-353.	0.4	2
52	Preparation and Properties of Porous β–Tricalcium Phosphate Bone Graft. Advanced Materials Research, 0, 624, 226-230.	0.3	4
53	Relative Translucency of Dental Lithium Disilicate Ceramic Restorations. Key Engineering Materials, 0, 512-515, 1775-1778.	0.4	0
54	Effect of Resin Cements for Porcelain Veneers on the Color Stability after Accelerated Ageing. Advanced Materials Research, 0, 624, 216-220.	0.3	1

#	Article	IF	CITATIONS
55	Affection of Post-Core Materials on the Resultant Color of Lithium Disilicate Ceramic Restorations. Key Engineering Materials, 0, 512-515, 1761-1764.	0.4	0
56	Inï¬,uence of Thickness on Residual Stress Proï¬ l e in Veneering Ceramic Layered: Measurement by Hole-Drilling. Key Engineering Materials, 0, 512-515, 1779-1783.	0.4	0
57	Preparation of Pigmented Glass for Infiltration and Investigation of its Physical and Mechanical Properties. Key Engineering Materials, 0, 512-515, 1802-1806.	0.4	Ο
58	Comparing Study on Transmittance of Four Dental All-Ceramic Core Material. Advanced Materials Research, 0, 624, 231-234.	0.3	0
59	The Effect of Varying Ferrule Modes on Fracture Resistance of Canines Restored with One-Piece Milled Zirconia Post and Core. Advanced Materials Research, 0, 624, 98-102.	0.3	Ο
60	Bond Strength of Different Adhesive Luting Materials to Zirconia Ceramics. Key Engineering Materials, 0, 512-515, 447-450.	0.4	0
61	Colorimetric Comparison of Two Kinds of VITA Shade Guides. Key Engineering Materials, 0, 512-515, 1807-1810.	0.4	Ο
62	Effects of the Mechanical Properties of Veneering Porcelain on Stress Distribution of Dental Zirconia Layered Structure: A Finite Element Model Study. Key Engineering Materials, 0, 512-515, 1797-1801.	0.4	0
63	Comparative Measurement on Transmittance of Four Systems of Dental All-Ceramic Zirconia Materials. Advanced Materials Research, 0, 833, 185-188.	0.3	0
64	Test of Relative Translucency for Four All-Ceramic Core Material after Veneering Ceramic. Key Engineering Materials, 0, 544, 388-391.	0.4	0
65	The Programming of Dentistry CCS/CCM Software. Key Engineering Materials, 0, 544, 502-506.	0.4	0
66	Effect of Post-Core Materials on the Color Value of Four Dental All-Ceramic Cores. Key Engineering Materials, 0, 544, 396-400.	0.4	0
67	A Comparative Study on Relative Translucency of Four Dental All-Ceramic Core Materials. Key Engineering Materials, 0, 544, 392-395.	0.4	1