
Zhiqiang Ku

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1603475/publications.pdf Version: 2024-02-01

ZHIOMNE KU

#	Article	IF	CITATIONS
1	Spike mutation D614G alters SARS-CoV-2 fitness. Nature, 2021, 592, 116-121.	13.7	1,380
2	Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature, 2021, 591, 293-299.	13.7	579
3	The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature, 2022, 602, 294-299.	13.7	364
4	Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Reports, 2022, 39, 110829.	2.9	214
5	Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape. Nature Communications, 2021, 12, 469.	5.8	148
6	Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. Nature, 2021, 595, 718-723.	13.7	128
7	A combination vaccine comprising of inactivated enterovirus 71 and coxsackievirus A16 elicits balanced protective immunity against both viruses. Vaccine, 2014, 32, 2406-2412.	1.7	67
8	A virus-like particle vaccine for coxsackievirus A16 potently elicits neutralizing antibodies that protect mice against lethal challenge. Vaccine, 2012, 30, 6642-6648.	1.7	65
9	Neutralizing Antibodies Induced by Recombinant Virus-Like Particles of Enterovirus 71 Genotype C4 Inhibit Infection at Pre- and Post-attachment Steps. PLoS ONE, 2013, 8, e57601.	1.1	65
10	Chimeric Virus-Like Particle Vaccines Displaying Conserved Enterovirus 71 Epitopes Elicit Protective Neutralizing Antibodies in Mice through Divergent Mechanisms. Journal of Virology, 2014, 88, 72-81.	1.5	65
11	A virus-like particle based bivalent vaccine confers dual protection against enterovirus 71 and coxsackievirus A16 infections in mice. Vaccine, 2014, 32, 4296-4303.	1.7	64
12	Active immunization with a Coxsackievirus A16 experimental inactivated vaccine induces neutralizing antibodies and protects mice against lethal infection. Vaccine, 2013, 31, 2215-2221.	1.7	58
13	High-yield production of recombinant virus-like particles of enterovirus 71 in Pichia pastoris and their protective efficacy against oral viral challenge in mice. Vaccine, 2015, 33, 2335-2341.	1.7	55
14	Single Neutralizing Monoclonal Antibodies Targeting the VP1 GH Loop of Enterovirus 71 Inhibit both Virus Attachment and Internalization during Viral Entry. Journal of Virology, 2015, 89, 12084-12095.	1.5	49
15	Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody. PLoS Pathogens, 2016, 12, e1005454.	2.1	43
16	Transcutaneous immunization via rapidly dissolvable microneedles protects against hand-foot-and-mouth disease caused by enterovirus 71. Journal of Controlled Release, 2016, 243, 291-302.	4.8	41
17	Detection, characterization and quantitation of Coxsackievirus A16 using polyclonal antibodies against recombinant capsid subunit proteins. Journal of Virological Methods, 2011, 173, 115-120.	1.0	40
18	Beta-Propiolactone Inactivation of Coxsackievirus A16 Induces Structural Alteration and Surface Modification of Viral Capsids. Journal of Virology, 2017, 91, .	1.5	34

ZHIQIANG KU

#	Article	IF	CITATIONS
19	Development of murine monoclonal antibodies with potent neutralization effects on enterovirus 71. Journal of Virological Methods, 2012, 186, 193-197.	1.0	32
20	Coxsackievirus A16-like particles produced in Pichia pastoris elicit high-titer neutralizing antibodies and confer protection against lethal viral challenge in mice. Antiviral Research, 2016, 129, 47-51.	1.9	28
21	Oncostatin M Receptor–Targeted Antibodies Suppress STAT3 Signaling and Inhibit Ovarian Cancer Growth. Cancer Research, 2021, 81, 5336-5352.	0.4	27
22	A bivalent virus-like particle based vaccine induces a balanced antibody response against both enterovirus 71 and norovirus in mice. Vaccine, 2015, 33, 5779-5785.	1.7	26
23	Inactivated coxsackievirus A10 experimental vaccines protect mice against lethal viral challenge. Vaccine, 2016, 34, 5005-5012.	1.7	25
24	Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs, 2022, 36, 231-323.	2.2	24
25	Characterization of enterovirus 71 capsids using subunit protein-specific polyclonal antibodies. Journal of Virological Methods, 2013, 187, 127-131.	1.0	21
26	Coxsackievirus A16 utilizes cell surface heparan sulfate glycosaminoglycans as its attachment receptor. Emerging Microbes and Infections, 2017, 6, 1-7.	3.0	20
27	Protein tyrosine phosphatase receptor δ serves as the orexigenic asprosin receptor. Cell Metabolism, 2022, 34, 549-563.e8.	7.2	20
28	Asprosin-neutralizing antibodies as a treatment for metabolic syndrome. ELife, 2021, 10, .	2.8	19
29	Virus-like particle-based vaccine against coxsackievirus A6 protects mice against lethal infections. Vaccine, 2016, 34, 4025-4031.	1.7	18
30	Recognition of a highly conserved glycoprotein B epitope by a bivalent antibody neutralizing HCMV at a post-attachment step. PLoS Pathogens, 2020, 16, e1008736.	2.1	17
31	Hexon-modified recombinant E1-deleted adenoviral vectors as bivalent vaccine carriers for Coxsackievirus A16 and Enterovirus 71. Vaccine, 2015, 33, 5087-5094.	1.7	16
32	Structure, Immunogenicity, and Protective Mechanism of an Engineered Enterovirus 71-Like Particle Vaccine Mimicking 80S Empty Capsid. Journal of Virology, 2018, 92, .	1.5	15
33	Identification of adipocyte plasma membrane-associated protein as a novel modulator of human cytomegalovirus infection. PLoS Pathogens, 2019, 15, e1007914.	2.1	13
34	Antibody therapies for the treatment of COVID-19. Antibody Therapeutics, 2020, 3, 101-108.	1.2	10
35	Potent Bispecific Neutralizing Antibody Targeting Glycoprotein B and the gH/gL/pUL128/130/131 Complex of Human Cytomegalovirus. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	10
36	Recent progress in development of monoclonal antibodies against human cytomegalovirus. Current Opinion in Virology, 2022, 52, 166-173.	2.6	8

Zhiqiang Ku

#	Article	IF	CITATIONS
37	Structural basis for HCMV Pentamer recognition by neuropilin 2 and neutralizing antibodies. Science Advances, 2022, 8, eabm2546.	4.7	8
38	686â€Preclinical characterization of a novel therapeutic antibody targeting LILRB2. , 2020, , .		0
39	Title is missing!. , 2020, 16, e1008736.		Ο
40	Title is missing!. , 2020, 16, e1008736.		0
41	Title is missing!. , 2020, 16, e1008736.		Ο
42	Title is missing!. , 2020, 16, e1008736.		0