Emmanuel Flahaut

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1602396/publications.pdf

Version: 2024-02-01

320 papers

15,187 citations

56 h-index 22166 113 g-index

327 all docs

327 docs citations

times ranked

327

18194 citing authors

#	Article	IF	CITATIONS
1	Few-layered-graphene/zirconia composites: Single-step powder synthesis, spark plasma sintering, microstructure and properties. Journal of the European Ceramic Society, 2022, 42, 2349-2361.	5.7	4
2	Al matrix composites reinforced by in situ synthesized graphene–Cu hybrid layers: interface control by spark plasma sintering conditions. Journal of Materials Science, 2022, 57, 6266-6281.	3.7	O
3	Interactive effects of metals and carbon nanotubes in a microcosm agrosystem. Journal of Hazardous Materials, 2022, 431, 128613.	12.4	2
4	Ecotoxicological assessment of commercial boron nitride nanotubes toward <i>Xenopus laevis</i> tadpoles and host-associated gut microbiota. Nanotoxicology, 2021, 15, 35-51.	3.0	16
5	Tuning Magnetic Properties of a Carbon Nanotube-Lanthanide Hybrid Molecular Complex through Controlled Functionalization. Molecules, 2021, 26, 563.	3.8	6
6	Observation of a superparamagnetic breakdown in gadolinium chloride filled double-walled carbon nanotubes. AIP Advances, 2021, 11, 035206.	1.3	1
7	Graphene-Based Nanomaterials Modulate Internal Biofilm Interactions and Microbial Diversity. Frontiers in Microbiology, 2021, 12, 623853.	3.5	5
8	Slime molds response to carbon nanotubes exposure: from internalization to behavior. Nanotoxicology, 2021, 15, 511-526.	3.0	2
9	Engineering of Microcage Carbon Nanotube Architectures with Decoupled Multimodal Porosity and Amplified Catalytic Performance. Advanced Materials, 2021, 33, e2008307.	21.0	9
10	(Invited) Environmental Impact of Carbon Nanotubes & Graphene and Related Materials (GRMs). ECS Meeting Abstracts, 2021, MA2021-01, 591-591.	0.0	0
11	(Invited) Ultrasonication-Induced Inner Shell Extraction from Doubleâ€Wall Carbon Nanotubes: Characterisation By Ultracentrifugation and in Situ Raman and Fluorescence-Excitation Spectroscopy. ECS Meeting Abstracts, 2021, MA2021-01, 555-555.	0.0	0
12	Comparative study of response of four crop species exposed to carbon nanotube contamination in soil. Chemosphere, 2021, 274, 129854.	8.2	20
13	Tuning the Reduction of Graphene Oxide Nanoflakes Differently Affects Neuronal Networks in the Zebrafish. Nanomaterials, 2021, 11, 2161.	4.1	9
14	Carbon nanomaterials-based polymer-matrix nanocomposites for antimicrobial applications: A review. Carbon, 2021, 182, 463-483.	10.3	28
15	Graphene oxide and reduced graphene oxide promote the effects of exogenous T3 thyroid hormone in the amphibian Xenopus laevis. Chemosphere, 2021, 281, 130901.	8.2	8
16	Superior carbon nanotube stability by molecular filling:a single-chirality study at extreme pressures. Carbon, 2021, 183, 884-892.	10.3	7
17	Ultrasonication-induced extraction of inner shells from double-wall carbon nanotubes characterized via in situ spectroscopy after density gradient ultracentrifugation. Carbon, 2021, 185, 113-125.	10.3	9
18	Effect of Nanostructuring on the Thermoelectric Properties of \hat{l}^2 -FeSi2. Nanomaterials, 2021, 11, 2852.	4.1	10

#	Article	IF	Citations
19	Transdermal Delivery of Macromolecules Using Two-in-One Nanocomposite Device for Skin Electroporation. Pharmaceutics, 2021, 13, 1805.	4.5	8
20	Rheological, electrical, and dynamic thermomechanical properties: Comparison between multiwall and double-wall carbon nanotubes in polylactide and polyamide 11. Physics of Fluids, 2021, 33, .	4.0	6
21	Nose-only inhalations of high-dose alumina nanoparticles/hydrogen chloride gas mixtures induce strong pulmonary pro-inflammatory response: a pilot study. Inhalation Toxicology, 2021, 33, 308-324.	1.6	5
22	Nanofibrous PEDOT-Carbon Composite on Flexible Probes for Soft Neural Interfacing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780197.	4.1	5
23	Strong spin–phonon coupling in Gd-filled nanotubes. Journal of Applied Physics, 2021, 130, .	2.5	2
24	Assessment of graphene oxide ecotoxicity at several trophic levels using aquatic microcosms. Carbon, 2020, 156, 261-271.	10.3	32
25	Preferred attachment of fluorine near oxygen-containing groups on the surface of double-walled carbon nanotubes. Applied Surface Science, 2020, 504, 144357.	6.1	19
26	Effect of ultrasound pretreatment on bromination of double-walled carbon nanotubes. Synthetic Metals, 2020, 259, 116233.	3.9	10
27	Microelectrodes from PEDOT-carbon nanofiber composite for high performance neural recording, stimulation and neurochemical sensing. MethodsX, 2020, 7, 101106.	1.6	12
28	One-step synthesis of few-layered-graphene/alumina powders for strong and tough composites with high electrical conductivity. Journal of the European Ceramic Society, 2020, 40, 5779-5789.	5.7	14
29	Carbon nanofiber-PEDOT composite films as novel microelectrode for neural interfaces and biosensing. Biosensors and Bioelectronics, 2020, 165, 112413.	10.1	49
30	Confinement of Dyes inside Boron Nitride Nanotubes: Photostable and Shifted Fluorescence down to the Near Infrared. Advanced Materials, 2020, 32, e2001429.	21.0	27
31	Study of cytotoxicity performance of carbon nanohorns by method of spin probes. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 737-744.	2.1	3
32	Mesoporous Single-Atom-Doped Graphene–Carbon Nanotube Hybrid: Synthesis and Tunable Electrocatalytic Activity for Oxygen Evolution and Reduction Reactions. ACS Catalysis, 2020, 10, 4647-4658.	11.2	100
33	Beyond graphene oxide acidity: Novel insights into graphene related materials effects on the sexual reproduction of seed plants. Journal of Hazardous Materials, 2020, 393, 122380.	12.4	14
34	Effect of Co-Mo catalyst preparation and CH ₄ /H ₂ flow on carbon nanotube synthesis. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 707-715.	2.1	12
35	(Invited) Environmental Impact of Carbon Nanotubes & Graphene and Related Materials (GRMs). ECS Meeting Abstracts, 2020, MA2020-01, 727-727.	0.0	0
36	Tailoring of Doubleâ€Walled Carbon Nanotubes for Formaldehyde Sensing through Encapsulation of Selected Materials. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900279.	1.8	5

#	Article	IF	CITATIONS
37	Double-walled carbon nanotubes, a performing additive to enhance capacity retention of antimony anode in potassium-ion batteries. Electrochemistry Communications, 2019, 105, 106493.	4.7	21
38	Bromine polycondensation in pristine and fluorinated graphitic carbons. Nanoscale, 2019, 11, 15298-15306.	5.6	14
39	Detection of Spin Reversal via Kondo Correlation in Hybrid Carbon Nanotube Quantum Dots. ACS Nano, 2019, 13, 10029-10035.	14.6	5
40	Electrical properties of double-wall carbon nanotubes nanocomposite hydrogels. Carbon, 2019, 146, 542-548.	10.3	34
41	Protecting Carbon Nanotubes from Oxidation for Selective Carbon Impurity Elimination. Journal of Physical Chemistry C, 2019, 123, 14725-14733.	3.1	14
42	Structure of inorganic nanocrystals confined within carbon nanotubes. Inorganica Chimica Acta, 2019, 492, 66-75.	2.4	16
43	Thermal Reduction of Graphene Oxide Mitigates Its In Vivo Genotoxicity Toward Xenopus laevis Tadpoles. Nanomaterials, 2019, 9, 584.	4.1	28
44	Chlorinated holey double-walled carbon nanotubes for relative humidity sensors. Carbon, 2019, 148, 413-420.	10.3	33
45	Transcriptomic response of the benthic freshwater diatom <i>Nitzschia palea</i> exposed to Few Layer Graphene. Environmental Science: Nano, 2019, 6, 1363-1381.	4.3	7
46	Overview of Carbon Nanotubes for Biomedical Applications. Materials, 2019, 12, 624.	2.9	237
47	Investigating a transcriptomic approach on marine mussel hemocytes exposed to carbon nanofibers: An in vitro/in vivo comparison. Aquatic Toxicology, 2019, 207, 19-28.	4.0	11
48	Adsorption and interactions of the bovine serum albumin-double walled carbon nanotube system. Journal of Molecular Liquids, 2018, 252, 1-8.	4.9	33
49	Switching on microglia with electro-conductive multi walled carbon nanotubes. Carbon, 2018, 129, 572-584.	10.3	13
50	Fast and easy preparation of few-layered-graphene/magnesia powders for strong, hard and electrically conducting composites. Carbon, 2018, 136, 270-279.	10.3	39
51	Microstructure, microhardness and thermal expansion of CNT/Al composites prepared by flake powder metallurgy. Composites Part A: Applied Science and Manufacturing, 2018, 105, 126-137.	7.6	56
52	Effect of Hydrogen Fluoride Addition and Synthesis Temperature on the Structure of Doubleâ€Walled Carbon Nanotubes Fluorinated by Molecular Fluorine. Physica Status Solidi (B): Basic Research, 2018, 255, 1700261.	1.5	4
53	Finite Element Modelling and Computational Analysis of Mechanical Properties of Carbon Composite-Based Love Wave Sensor. , 2018, , .		1
54	Wavelength tunable soliton rains in a nanotube-mode locked Tm-doped fiber laser. Applied Physics Letters, 2018, 113, .	3.3	26

#	Article	IF	Citations
55	Structure and Electrochemical Properties of Carbon Nanotubes Synthesized with Catalysts Obtained by Decomposition of Co, Ni, and Fe Polyoxomolybdates Supported by MgO. Journal of Structural Chemistry, 2018, 59, 786-792.	1.0	7
56	Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 2018, 12, 10582-10620.	14.6	438
57	Kondo effect and enhanced magnetic properties in gadolinium functionalized carbon nanotube supramolecular complex. Scientific Reports, 2018, 8, 8057.	3.3	10
58	Observation of strong Kondo like features and co-tunnelling in superparamagnetic GdCl3 filled 1D nanomagnets. Journal of Applied Physics, 2018, 123, .	2.5	6
59	Graphene oxide impairs the pollen performance of <i>Nicotiana tabacum</i> and <i>Corylus avellana</i> suggesting potential negative effects on the sexual reproduction of seed plants. Environmental Science: Nano, 2018, 5, 1608-1617.	4.3	18
60	Human Properdin Opsonizes Nanoparticles and Triggers a Potent Pro-inflammatory Response by Macrophages without Involving Complement Activation. Frontiers in Immunology, 2018, 9, 131.	4.8	34
61	Investigation of the grafting of fluorophores onto double-walled carbon nanotubes: The influence of the geometry of the molecules. Applied Surface Science, 2018, 457, 1181-1191.	6.1	1
62	Guided SH-SAW sensor based on DWNTs sensitive material for VOCs and humidity detection. Journal of Integrated Circuits and Systems, 2018, 13, 1-4.	0.4	3
63	Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range. Journal Physics D: Applied Physics, 2017, 50, 08LT01.	2.8	14
64	Environmental impact of engineered carbon nanoparticles: from releases to effects on the aquatic biota. Current Opinion in Biotechnology, 2017, 46, 1-6.	6.6	57
65	Low temperature magneto transport features of rare earth element functionalized carbon nanotube network devices for spintronic applications. Proceedings of SPIE, 2017, , .	0.8	0
66	Qualitative and Semiquantitative Assessment of Exposure to Engineered Nanomaterials within the French EpiNano Program: Inter- and Intramethod Reliability Study. Annals of Occupational Hygiene, 2017, 61, 87-97.	1.9	6
67	Surface area of carbon-based nanoparticles prevails on dispersion for growth inhibition in amphibians. Carbon, 2017, 119, 72-81.	10.3	20
68	Structural Properties of Double-Walled Carbon Nanotubes Driven by Mechanical Interlayer Coupling. ACS Nano, 2017, 11, 4840-4847.	14.6	21
69	Conducting, transparent and flexible substrates obtained from interfacial thin films of double-walled carbon nanotubes. Journal of Colloid and Interface Science, 2017, 502, 146-152.	9.4	13
70	Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles. Nanotechnology, 2017, 28, 025502.	2.6	9
71	The Unexpected Complexity of Filling Double-Wall Carbon Nanotubes With Nickel (and Iodine) 1-D Nanocrystals. IEEE Nanotechnology Magazine, 2017, 16, 759-766.	2.0	7
72	Light Control of Charge Transfer and Excitonic Transitions in a Carbon Nanotube/Porphyrin Hybrid. Advanced Materials, 2017, 29, 1605745.	21.0	11

#	Article	IF	CITATIONS
73	A comparative study on few-layer graphene production by exfoliation of different starting materials in a low boiling point solvent. FlatChem, 2017, 1, 74-88.	5 . 6	47
74	Experimental studies on the detachment of multi-walled carbon nanotubes by a mobile liquid interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 109-115.	4.7	2
75	Competition between covalent and non-covalent grafting of fluorescein isothiocyanate on double-walled carbon nanotubes: A quantitative approach. Carbon, 2017, 123, 735-743.	10.3	8
76	Carbon nanotubes: Impacts and behaviour in the terrestrial ecosystem - A review. Carbon, 2017, 123, 767-785.	10.3	72
77	A Hydrogel/Carbonâ€Nanotube Needleâ€Free Device for Electrostimulated Skin Drug Delivery. ChemPhysChem, 2017, 18, 2715-2723.	2.1	21
78	High energy density of primary lithium batteries working with sub-fluorinated few walled carbon nanotubes cathode. Journal of Alloys and Compounds, 2017, 726, 852-859.	5.5	38
79	Preferential adsorption of NH ₃ gas molecules on MWCNT defect sites probed using <i>in situ</i> Raman spectroscopy. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600930.	1.8	7
80	Few Layer Graphene sticking by biofilm of freshwater diatom Nitzschia palea as a mitigation to its ecotoxicity. Carbon, 2017, 113, 139-150.	10.3	29
81	SH-SAW VOCs sensor based on ink-jet printed MWNTs / polymer nanocomposite films. , 2017, , .		1
82	Love wave gas sensor based on DWNTs sensitive material. , 2017, , .		0
83	One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids. Beilstein Journal of Nanotechnology, 2017, 8, 2669-2679.	2.8	30
84	Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes. Beilstein Journal of Nanotechnology, 2017, 8, 1688-1698.	2.8	35
85	Charged iodide in chains behind the highly efficient iodine doping in carbon nanotubes. Physical Review Materials, $2017,1,\ldots$	2.4	25
86	Adsorption of Cadmium Ions from Water on Double-walled Carbon Nanotubes/Iron Oxide Composite. Chemistry Journal of Moldova, 2017, 12, 71-78.	0.6	1
87	Ecotoxicology of Carbon Nanotubes Toward Amphibian Larvae. , 2016, , 931-940.		0
88	A low cost fabrication method for fast response gas sensor based on DWCNTs resistors. , 2016, , .		0
89	The unexpected complexity of filling double-wall carbon nanotubes with iodine-based 1D nanocrystals. , 2016, , .		0
90	Interaction of graphene-related materials with human intestinal cells: an in vitro approach. Nanoscale, 2016, 8, 8749-8760.	5.6	37

#	Article	IF	Citations
91	Surface Area of Carbon Nanoparticles: A Dose Metric for a More Realistic Ecotoxicological Assessment. Nano Letters, 2016, 16, 3514-3518.	9.1	39
92	Examining the impact of multi-layer graphene using cellular and amphibian models. 2D Materials, 2016, 3, 025009.	4.4	18
93	A new insight on the mechanisms of filling closed carbon nanotubes with molten metal iodides. Carbon, 2016, 110, 48-50.	10.3	16
94	Dramatic enhancement of double-walled carbon nanotube quality through a one-pot tunable purification method. Carbon, 2016, 110, 292-303.	10.3	14
95	Carbon nanotube/alumina and graphite/alumina composite coatings on stainless steel for tribological applications. Materials Today Communications, 2016, 8, 118-126.	1.9	20
96	Biological effects of double-walled carbon nanotubes on the innate immune system: An in vitro study on THP-1 human monocytes. Toxicology, 2016, 365, 1-8.	4.2	1
97	Relationship between heating atmosphere and copper foil impurities during graphene growth via low pressure chemical vapor deposition. Carbon, 2016, 109, 529-541.	10.3	16
98	Importance of the structural integrity of a carbon conjugated mediator for photocatalytic hydrogen generation from water over a CdS–carbon nanotube–MoS ₂ composite. Chemical Communications, 2016, 52, 13596-13599.	4.1	20
99	A comparative study on the enzymatic biodegradability of covalently functionalized double- and multi-walled carbon nanotubes. Carbon, 2016, 100, 367-374.	10.3	30
100	Anisotropic mechanical and functional properties of graphene-based alumina matrix nanocomposites. Journal of the European Ceramic Society, 2016, 36, 2075-2086.	5.7	57
101	International standardized procedures for <i>in vivo</i> evaluation of multi-walled carbon nanotube toxicity in water. Toxicological and Environmental Chemistry, 2016, 98, 829-847.	1.2	7
102	High strength – High conductivity double-walled carbon nanotube – Copper composite wires. Carbon, 2016, 96, 212-215.	10.3	65
103	Shielding effects in thin films of carbon nanotubes within microwave range. Lithuanian Journal of Physics, 2016, 56, .	0.4	1
104	Effectiveness of a twoâ€stage strategy with <scp>HPV</scp> testing followed by visual inspection with acetic acid for cervical cancer screening in a lowâ€income setting. International Journal of Cancer, 2015, 136, E743-50.	5.1	44
105	Inhibition of Cancer Cell Migration by Multiwalled Carbon Nanotubes. Advanced Healthcare Materials, 2015, 4, 1640-1644.	7.6	29
106	Novel electrical conduction properties obtained in few-layer graphene/epoxy nanocomposites. , 2015, , .		3
107	Influence of the hydrocarbon chain length of imidazolium-based ionic liquid on the dispersion and stabilization of double-walled carbon nanotubes in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 107-116.	4.7	8
108	Double walled carbon nanotubes promote the overproduction of extracellular protein-like polymers in Nitzschia palea: An adhesive response for an adaptive issue. Carbon, 2015, 88, 113-125.	10.3	26

#	Article	IF	CITATIONS
109	Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom <i>Nitzschia palea</i> : "A sticky story― Nanotoxicology, 2015, 9, 219-229.	3.0	36
110	Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors. Nature Communications, 2015, 6, 8589.	12.8	258
111	Large-Diameter Single-Wall Carbon Nanotubes Formed Alongside Small-Diameter Double-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2015, 119, 1524-1535.	3.1	11
112	Quantitative detection of carbon nanotubes in biological samples by an original method based on microwave permittivity measurements. Carbon, 2015, 81, 535-545.	10.3	17
113	All-carbon photodetectors. , 2015, , .		0
114	Impact of CNT-film printed on conformal resonator on paper. , 2014, , .		3
115	Properties of Carbon Nanotubes. , 2014, , 1-49.		3
116	Structural discrimination of double-walled carbon nanotubes by chiral diporphyrin nanocalipers. Journal of Materials Chemistry A, 2014, 2, 19067-19074.	10.3	16
117	Temperature-dependent diffusive to ballistic transport transition in aligned double walled carbon nanotubes in the high frequency regime. Applied Physics Letters, 2014, 105, 173511.	3.3	5
118	Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation. ACS Nano, 2014, 8, 4836-4847.	14.6	66
119	Double-walled carbon nanotubes: Quantitative purification assessment, balance between purification and degradation and solution filling as an evidence of opening. Carbon, 2014, 78, 79-90.	10.3	44
120	Redox active Double Wall Carbon Nanotubes show intrinsic anti-proliferative effects and modulate autophagy in cancer cells. Carbon, 2014, 78, 589-600.	10.3	9
121	A single-molecule approach to explore binding, uptake and transport of cancer cell targeting nanotubes. Nanotechnology, 2014, 25, 125704.	2.6	15
122	Development of efficient digestion procedures for quantitative determination of cobalt and molybdenum catalyst residues in carbon nanotubes. Carbon, 2014, 80, 59-67.	10.3	10
123	Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1287-1299.	3.3	57
124	Classification Framework for Grapheneâ€Based Materials. Angewandte Chemie - International Edition, 2014, 53, 7714-7718.	13.8	369
125	Short term exposure to multi-walled carbon nanotubes induce oxidative stress and DNA damage in Xenopus laevis tadpoles. Ecotoxicology and Environmental Safety, 2014, 107, 22-29.	6.0	37
126	Inhibition of microbial growth by carbon nanotube networks. Nanoscale, 2013, 5, 9023.	5.6	63

#	Article	IF	CITATIONS
127	Chemical functionalization of Xanthan gum for the dispersion of double-walled carbon nanotubes in water. Carbon, 2013, 62, 149-156.	10.3	16
128	Toughened carbon nanotube–iron–mullite composites prepared by spark plasma sintering. Ceramics International, 2013, 39, 5513-5519.	4.8	10
129	Biocompatible polymer-assisted dispersion of multi walled carbon nanotubes in water, application to the investigation of their ecotoxicity using Xenopus laevis amphibian larvae. Carbon, 2013, 54, 175-191.	10.3	50
130	Texture development in Fe-doped alumina ceramics via templated grain growth and their application to carbon nanotube growth. Journal of the European Ceramic Society, 2013, 33, 1093-1100.	5.7	4
131	Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. Optics Express, 2013, 21, 23261.	3.4	74
132	CNTs effects on RF resonators printed on paper. , 2013, , .		6
133	Preparation and characterization of nanomaterials based on bifacial carbon nanotubes and iron oxides: Application in catalysis. MATEC Web of Conferences, 2013, 5, 04024.	0.2	0
134	Double-walled carbon nanotubes suspending by natural active substances (saponins and humic acids). MATEC Web of Conferences, 2013, 5, 04027.	0.2	0
135	CHAPTER 16. Smart Carbon Nanotubes. RSC Smart Materials, 2013, , 90-116.	0.1	1
136	Dispersion of the carbon nanotubes (DWNTC) by the cationic surfactants imidazolinium type. IOP Conference Series: Materials Science and Engineering, 2012, 28, 012010.	0.6	4
137	Double-wall carbon nanotube Q-switched and mode-locked two-micron fiber lasers. , 2012, , .		7
138	Bromination of Double-Walled Carbon Nanotubes. Chemistry of Materials, 2012, 24, 2708-2715.	6.7	76
139	Elucidation of the Role of Carbon Nanotube Patterns on the Development of Cultured Neuronal Cells. Langmuir, 2012, 28, 17363-17371.	3.5	46
140	Process influence on the moisture absorption in a polymer nanocomposite., 2012,,.		0
141	DWCNT-Doped Silica Gel Exhibiting Both Ionic and Electronic Conductivities. Journal of Physical Chemistry C, 2012, 116, 11306-11314.	3.1	12
142	Highâ€pressure optical absorption studies of doubleâ€walled carbon nanotubes. Physica Status Solidi - Rapid Research Letters, 2012, 6, 382-384.	2.4	2
143	Design of double-walled carbon nanotubes for biomedical applications. Nanotechnology, 2012, 23, 365102.	2.6	46
144	Thermal Decomposition of Co-Doped Calcium Tartrate and Use of the Products for Catalytic Chemical Vapor Deposition Synthesis of Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 343-351.	3.1	8

#	Article	IF	CITATIONS
145	Double-walled carbon nanotubes trigger IL- $1\hat{1}^2$ release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 987-995.	3.3	120
146	A simple and versatile micro contact printing method for generating carbon nanotubes patterns on various substrates. Microelectronic Engineering, 2012, 97, 301-305.	2.4	17
147	A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets. Nanotechnology, 2012, 23, 095303.	2.6	17
148	Charge transfer between carbon nanotubes and sulfuric acid as determined by Raman spectroscopy. Physical Review B, 2012, 85, .	3.2	24
149	Cellular localization, accumulation and trafficking of double-walled carbon nanotubes in human prostate cancer cells. Nano Research, 2012, 5, 223-234.	10.4	22
150	Organized growth of carbon nanotubes on Fe-doped alumina ceramic substrates. Carbon, 2012, 50, 3092-3095.	10.3	35
151	Hardness and friction behavior of bulk CoAl2O4 and Co–Al2O3 composite layers formed during Spark Plasma Sintering of CoAl2O4 powders. Ceramics International, 2012, 38, 5209-5217.	4.8	7
152	Toxicity and Environmental Impact of Carbon Nanotubes. Carbon Nanostructures, 2011, , 211-219.	0.1	2
153	Recognition of Carbon Nanotubes by the Human Innate Immune System. Carbon Nanostructures, 2011, , 183-210.	0.1	7
154	Filling of Carbon Nanotubes with Compounds in Solution or Melted Phase. Carbon Nanostructures, 2011, , 41-65.	0.1	4
155	Ecotoxicology: Nanoparticle Reactivity and Living Organisms. , 2011, , 325-357.		9
156	Ultrafast Raman laser mode-locked by nanotubes. Optics Letters, 2011, 36, 3996.	3.3	60
157	Tuning the electrical transport properties of double-walled carbon nanotubes by semiconductor and semi-metal filling. Journal of Applied Physics, 2011, 110, 123708.	2.5	9
158	Chloroquine-enhanced gene delivery mediated by carbon nanotubes. Carbon, 2011, 49, 5348-5358.	10.3	32
159	Electronic transport properties of double-wall carbon nanotubes. Physical Review B, 2011, 84, .	3.2	7
160	Comparative Raman spectroscopy of individual and bundled double wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2011, 248, 974-979.	1.5	3
161	International amphibian micronucleus standardized procedure (ISO 21427â€1) for ⟨i⟩in vivo⟨ i⟩ evaluation of doubleâ€walled carbon nanotubes toxicity and genotoxicity in water. Environmental Toxicology, 2011, 26, 136-145.	4.0	51
162	CCVD Synthesis of Carbonâ€Encapsulated Cobalt Nanoparticles for Biomedical Applications. Advanced Functional Materials, 2011, 21, 3583-3588.	14.9	39

#	Article	IF	Citations
163	Electrical properties and reactivity under air–CO flows of composite systems based on ceria coated carbon nanotubes. Chemical Engineering Journal, 2011, 171, 272-278.	12.7	4
164	Electrical conductivity and Raman imaging of double wall carbon nanotubes in a polymer matrix. Composites Science and Technology, 2011, 71, 1326-1330.	7.8	29
165	Optimising DNA binding to carbon nanotubes by non-covalent methods. Carbon, 2011, 49, 1775-1781.	10.3	44
166	Multi-scale engineering for neuronal cell growth and differentiation. Microelectronic Engineering, 2011, 88, 1668-1671.	2.4	21
167	A simple and versatile method for statistical analysis of the electrical properties of individual double walled carbon nanotubes. Microelectronic Engineering, 2011, 88, 1637-1639.	2.4	8
168	Magneto-Coulomb Effect in Carbon Nanotube Quantum Dots Filled with Magnetic Nanoparticles. Physical Review Letters, 2011, 107, 186804.	7.8	19
169	Broadband ultrafast pulse generation with double wall carbon nanotubes. , 2011, , .		0
170	Carbon nanotubes have a deleterious effect on the nose: the first in vitro data. Rhinology, 2011, 49, 445-452.	1.3	7
171	Uptake and Release of Doubleâ€Walled Carbon Nanotubes by Mammalian Cells. Advanced Functional Materials, 2010, 20, 3272-3279.	14.9	47
172	Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology, 2010, 272, 39-45.	4.2	82
173	Toughening and hardening in double-walled carbon nanotube/nanostructured magnesia composites. Carbon, 2010, 48, 1952-1960.	10.3	70
174	Pressure dependence of Raman modes in double wall carbon nanotubes filled with 1D Tellurium. Carbon, 2010, 48, 2566-2572.	10.3	11
175	The weight and density of carbon nanotubes versus the number of walls and diameter. Carbon, 2010, 48, 2994-2996.	10.3	242
176	Application of Homogeneously Precipitated Nanosized Feâ€Doped Alumina Powders to Carbon Nanotube Growth. Journal of the American Ceramic Society, 2010, 93, 3732-3739.	3.8	5
177	Tunability of Carbon NanoTubes Resistance Deposited by Inkjet Printing at Low Temperature. Materials Research Society Symposia Proceedings, 2010, 1258, 1.	0.1	2
178	Double-walled carbon nanotube-based polymer composites for electromagnetic protection. International Journal of Microwave and Wireless Technologies, 2010, 2, 487-495.	1.9	6
179	DC and radio-frequency transmission characteristics of double-walled carbon nanotubes-based ink. International Journal of Microwave and Wireless Technologies, 2010, 2, 471-477.	1.9	6
180	Temperature dependence of Raman scattering in filled double-walled carbon nanotubes. Journal of Applied Physics, 2010, 108, 044309.	2.5	10

#	Article	IF	Citations
181	Double Wall Carbon Nanotubes as a Molecular Sensor in Polymer Composites. , 2010, , .		O
182	Introduction to the special focus issue: environmental toxicity of nanoparticles. Nanomedicine, 2010, 5, 949-950.	3.3	7
183	Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes. Nanomedicine, 2010, 5, 963-974.	3.3	63
184	Chronic toxicity of double-walled carbon nanotubes to three marine organisms: influence of different dispersion methods. Nanomedicine, 2010, 5, 951-961.	3.3	57
185	Higher Dispersion Efficacy of Functionalized Carbon Nanotubes in Chemical and Biological Environments. ACS Nano, 2010, 4, 2615-2626.	14.6	189
186	Stability of Fluorinated Double-Walled Carbon Nanotubes Produced by Different Fluorination Techniques. Chemistry of Materials, 2010, 22, 4197-4203.	6.7	49
187	Hydrophobic double walled carbon nanotubes interaction with phopholipidic model membranes: 1H-, 2H-, 31P NMR and ESR study. Environmental Toxicology and Pharmacology, 2010, 30, 147-152.	4.0	12
188	Catalytic Chemical Vapor Deposition Synthesis of Double-Walled and Few-Walled Carbon Nanotubes by Using a MoO3-Supported Conditioning Catalyst to Control the Formation of Iron Catalytic Particles within an α-Al1.8Fe0.2O3 Self-Supported Foam. Journal of Physical Chemistry C, 2010, 114, 19188-19193.	3.1	5
189	Writing simple RF electronic devices on paper with carbon nanotube ink. Nanotechnology, 2009, 20, 375203.	2.6	44
190	Spark-plasma-sintering of double-walled carbon nanotube–magnesia nanocomposites. Scripta Materialia, 2009, 60, 741-744.	5.2	21
191	Iron-stabilized nanocrystalline ZrO2 solid solutions: Synthesis by combustion and thermal stability. Materials Research Bulletin, 2009, 44, 1301-1311.	5.2	13
192	Integral low-energy electron Mössbauer spectroscopic studies of the surfaces of carbon nanotube-nanocomposite powders. Hyperfine Interactions, 2009, 189, 125-130.	0.5	0
193	Sorting and transmission electron microscopy analysis of single or double wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2009, 246, 2675-2678.	1.5	8
194	AFM imaging of functionalized double-walled carbon nanotubes. Ultramicroscopy, 2009, 109, 899-906.	1.9	28
195	Catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes from α-(Al1â°Fe)2O3 powders and self-supported foams. Carbon, 2009, 47, 482-492.	10.3	23
196	CCVD synthesis of carbon nanotubes with W/Co–MgO catalysts. Carbon, 2009, 47, 789-794.	10.3	28
197	Fe-Substituted Mullite Powders for the In Situ Synthesis of Carbon Nanotubes by Catalytic Chemical Vapor Deposition. Journal of Physical Chemistry C, 2009, 113, 11239-11245.	3.1	4
198	Composites of Double-Walled Carbon Nanotubes with bis-Quaterthiophene-Fluorenone Conjugated Oligomer: Spectroelectrochemical and Photovoltaic Properties. Journal of Physical Chemistry C, 2009, 113, 17347-17354.	3.1	25

#	Article	IF	Citations
199	Micro-Raman scattering of selenium-filled double-walled carbon nanotubes: Temperature study. Journal of Applied Physics, 2009, 105, 094312.	2.5	7
200	Double-walled carbon nanotube dispersion via surfactant substitution. Journal of Materials Chemistry, 2009, 19, 2729.	6.7	70
201	Raman		

#	Article	IF	CITATIONS
217	Carbon nanotube-based polymer composites for microwave applications. , 2008, , .		4
218	Synthesis of \hat{l}^3 -(Al1-xFex)2O3 solid solutions from oxinate precursors and formation of carbon nanotubes from the solid solutions using methane or ethylene as carbon source. Journal of Materials Research, 2008, 23, 3096-3111.	2.6	6
219	Double-Walled Carbon Nanotubes-Incorporated Donor–Acceptor-Type Organic Photovoltaic Devices Using Poly(3-octylthiophene) and C60. Japanese Journal of Applied Physics, 2008, 47, 1219-1222.	1.5	11
220	RamanGband in double-wall carbon nanotubes combiningpdoping and high pressure. Physical Review B, 2008, 78, .	3.2	27
221	Band-Gap Modification Induced in HgTe by Dimensional Constraint in Carbon Nanotubes: Effect of Nanotube Diameter on Microstructure. Springer Proceedings in Physics, 2008, , 213-216.	0.2	1
222	Carbon nanotubes-based microwave and millimeter wave sensors., 2007,,.		6
223	Improving the photovoltaic response of a poly(3-octylthiophene)/n-Si heterojunction by incorporating double-walled carbon nanotubes. Nanotechnology, 2007, 18, 185708.	2.6	28
224	Ultraviolet photon absorption in single- and double-wall carbon nanotubes and peapods: Heating-induced phonon line broadening, wall coupling, and transformation. Physical Review B, 2007, 76, .	3.2	9
225	Millimeter wave carbon nanotube gas sensor. Journal of Applied Physics, 2007, 101, 106103.	2.5	24
226	Carbon Nanotube Based Dielectric for Enhanced RF MEMS Reliability. IEEE MTT-S International Microwave Symposium Digest IEEE MTT-S International Microwave Symposium, 2007, , .	0.0	16
227	Assessment of the potential <i>in vivo </i> ecotoxicity of Double-Walled Carbon Nanotubes (DWNTs) in water, using the amphibian <i>Ambystoma mexicanum </i> Nanotoxicology, 2007, 1, 149-156.	3.0	40
228	Raman bands of double-wall carbon nanotubes: comparison with single- and triple-wall carbon nanotubes, and influence of annealing and electron irradiation. Journal of Raman Spectroscopy, 2007, 38, 714-720.	2.5	37
229	A new fast method for ceramic foam impregnation: Application to the CCVD synthesis of carbon nanotubes. Applied Catalysis A: General, 2007, 319, 7-13.	4.3	9
230	Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms. Carbon, 2007, 45, 607-617.	10.3	100
231	Meta- and hybrid-CNTs: A clue for the future development of carbon nanotubes. Materials Science and Engineering C, 2007, 27, 1096-1101.	7.3	32
232	Influence of carbonaceous electrodes on capacitance and breakdown voltage for hybrid capacitor. Microelectronics Journal, 2007, 38, 642-648.	2.0	4
233	Pressure dependence of Raman modes in DWCNT filled with PbI2 semiconductor. Physica Status Solidi (B): Basic Research, 2007, 244, 136-141.	1.5	4
234	EFFECT OF CARBON NANOTUBES ON DEVELOPING ZEBRAFISH (DANIO RERIO) EMBRYOS. Environmental Toxicology and Chemistry, 2007, 26, 708.	4.3	349

#	Article	IF	Citations
235	Field electron emission of double walled carbon nanotube film prepared by drop casting method. Solid-State Electronics, 2007, 51, 788-792.	1.4	19
236	Optical Absorption and Raman Spectroscopy Study of the Fluorinated Doubleâ€Wall Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 233-238.	2.1	9
237	Controlled laser heating of carbon nanotubes. Applied Physics Letters, 2006, 88, 173113.	3.3	47
238	Surface Properties, Porosity, Chemical and Electrochemical Applications., 2006,, 495-549.		14
239	In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes. Chemistry of Materials, 2006, 18, 1525-1533.	6.7	161
240	Crystallization of 2H and 4H Pbl2in Carbon Nanotubes of Varying Diameters and Morphologies. Chemistry of Materials, 2006, 18, 2059-2069.	6.7	86
241	Hybrid carbon nanotubes: Strategy, progress, and perspectives. Journal of Materials Research, 2006, 21, 2774-2793.	2.6	122
242	Infrared-active phonons in carbon nanotubes. Physical Review B, 2006, 74, .	3.2	38
243	High performance thin film bulk acoustic resonator covered with carbon nanotubes. Applied Physics Letters, 2006, 89, 143122.	3.3	13
244	Thermal Behavior of Fluorinated Double-Walled Carbon Nanotubes. Chemistry of Materials, 2006, 18, 4967-4971.	6.7	23
245	Complement activation and protein adsorption by carbon nanotubes. Molecular Immunology, 2006, 43, 193-201.	2.2	395
246	Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells. Carbon, 2006, 44, 1093-1099.	10.3	101
247	Impact of the surface roughness on the electrical capacitance. Microelectronics Journal, 2006, 37, 752-758.	2.0	36
248	Study of the cytotoxicity of CCVD carbon nanotubes. Journal of Materials Science, 2006, 41, 2411-2416.	3.7	31
249	Synthesis of the metastable \hat{l} ±-Al1.8Fe0.2O3 solid solution from precursors prepared by combustion. Journal of the European Ceramic Society, 2006, 26, 3099-3111.	5.7	27
250	Structural selective charge transfer in iodine-doped carbon nanotubes. Journal of Physics and Chemistry of Solids, 2006, 67, 1190-1192.	4.0	33
251	Laser Induced Modifications of Carbon Nanotube Composite Surfaces. Japanese Journal of Applied Physics, 2006, 45, 7776-7779.	1.5	1
252	Development of a Large Heat Lift 40–80 K Pulse Tube Cooler for Space Applications. AIP Conference Proceedings, 2006, , .	0.4	0

#	Article	IF	Citations
253	Modification of Al Current Collector/Active Material Interface for Power Improvement of Electrochemical Capacitor Electrodes. Journal of the Electrochemical Society, 2006, 153, A649.	2.9	55
254	Improving photovoltaic response of poly(3-hexylthiophene)/n-Si heterojunction by incorporating double walled carbon nanotubes. Applied Physics Letters, 2006, 89, 223505.	3.3	41
255	Experimental determination of microwave attenuation and electrical permittivity of double-walled carbon nanotubes. Applied Physics Letters, 2006, 88, 153108.	3.3	36
256	Nanoscale pressure effects in individual double-wall carbon nanotubes. Physical Review B, 2006, 73, .	3.2	32
257	High power density electrodes for Carbon supercapacitor applications. Electrochimica Acta, 2005, 50, 4174-4181.	5.2	327
258	Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon, 2005, 43, 375-383.	10.3	134
259	Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation. Chemical Physics Letters, 2005, 402, 422-427.	2.6	201
260	Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte. Journal of Power Sources, 2005, 139, 371-378.	7.8	222
261	Double walled carbon nanotube/polymer composites via in-situ nitroxide mediated polymerisation of amphiphilic block copolymers. Carbon, 2005, 43, 873-876.	10.3	100
262	Inertness of Near-Armchair Carbon Nanotubes Towards Fluorination. AIP Conference Proceedings, 2005, , .	0.4	1
263	Spectroscopic detection of carbon nanotube interaction with amphiphilic molecules in epoxy resin composites. Journal of Applied Physics, 2005, 97, 034303.	2.5	26
264	Similarities in the Raman RBM and D bands in double-wall carbon nanotubes. Physical Review B, 2005, 72, .	3.2	13
265	Raman spectroscopy of PbI2-filled double-walled carbon nanotubes. Journal of Applied Physics, 2005, 98, 104304.	2.5	7
266	Gate-Dependent Magnetoresistance Phenomena in Carbon Nanotubes. Physical Review Letters, 2005, 94, 066801.	7.8	43
267	Fe/Co Alloys for the Catalytic Chemical Vapor Deposition Synthesis of Single- and Double-Walled Carbon Nanotubes (CNTs). 2. The CNTâ^'Fe/Coâ^'MgAl2O4 System. Journal of Physical Chemistry B, 2005, 109, 17825-17830.	2.6	24
268	In situ CCVD synthesis of carbon nanotubes within a commercial ceramic foam. Journal of Materials Chemistry, 2005, 15, 4041.	6.7	23
269	Spectroscopy of Single- and Double-Wall Carbon Nanotubes in Different Environments. Nano Letters, 2005, 5, 511-514.	9.1	199
270	Fe/Co Alloys for the Catalytic Chemical Vapor Deposition Synthesis of Single- and Double-Walled Carbon Nanotubes (CNTs). 1. The CNTâ^'Fe/Coâ^'MgO System. Journal of Physical Chemistry B, 2005, 109, 17813-17824.	2.6	29

#	Article	IF	CITATIONS
271	Double-Walled Carbon Nanotubes: Synthesis and Filling by 1-D Nanocrystals., 2005,, 281-286.		O
272	Misalignment angles and the 2D–3D temperature crossover in Bi2212 multifilaments studied using transport critical current densities. Superconductor Science and Technology, 2004, 17, 463-468.	3 . 5	6
273	Enhanced Raman signal of CH3 on carbon nanotubes. Materials Research Society Symposia Proceedings, 2004, 858, 107.	0.1	1
274	Light scattering of double wall carbon nanotubes under hydrostatic pressure: pressure effects on the internal and external tubes. Physica Status Solidi (B): Basic Research, 2004, 241, 3360-3366.	1.5	14
275	In situ high temperature neutron study of the Bi2212 phase formation in Ag-sheathed tapes. Physica B: Condensed Matter, 2004, 350, E339-E341.	2.7	2
276	Influence of filament thickness, thermal process and magnetic field on misalignment angles in multifilament Bi2212 tapes. Cryogenics, 2004, 44, 681-686.	1.7	7
277	CCVD synthesis of carbon nanotubes from (Mg,Co,Mo)O catalysts: influence of the proportions of cobalt and molybdenum. Journal of Materials Chemistry, 2004, 14, 646.	6.7	75
278	Microcontact printing process for the patterned growth of individual CNTs. Microelectronic Engineering, 2004, 73-74, 564-569.	2.4	12
279	Nanodevices for correlated electrical transport and structural investigation of individual carbon nanotubes. Microelectronic Engineering, 2004, 73-74, 689-694.	2.4	8
280	Raman spectroscopy of iodine-doped double-walled carbon nanotubes. Physical Review B, 2004, 69, .	3.2	70
281	Hydrogen Storage in High Surface Area Carbon Nanotubes Produced by Catalytic Chemical Vapor Deposition. Journal of Physical Chemistry B, 2004, 108, 12718-12723.	2.6	69
282	Formation of Nanofibers and Nanotubes Production. , 2004, , 1-129.		10
283	Microcontact printing process for the patterned growth of individual CNTs. Microelectronic Engineering, 2004, 73-74, 564-569.	2.4	0
284	High yield incorporation and washing properties of halides incorporated into single walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2003, 76, 457-462.	2.3	61
285	Alignment and nano-connections of isolated carbon nanotubes. Microelectronic Engineering, 2003, 67-68, 683-689.	2.4	6
286	Probing the electronic properties of individual carbon nanotube in 35 T pulsed magnetic field. Chemical Physics Letters, 2003, 372, 733-738.	2.6	17
287	Rings of Double-Walled Carbon Nanotube Bundles. Nano Letters, 2003, 3, 685-689.	9.1	72
288	DC and AC Conductivity of Carbon Nanotubesâ^'Polyepoxy Composites. Macromolecules, 2003, 36, 5187-5194.	4.8	557

#	Article	IF	CITATIONS
289	Effect of Palmitic Acid on the Electrical Conductivity of Carbon Nanotubesâ 'Epoxy Resin Composites. Macromolecules, 2003, 36, 9678-9680.	4.8	176
290	Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chemical Communications, 2003, , 1442 .	4.1	350
291	Dynamic heat treatment of BSCCO-2212 tapes with homogeneous properties and high critical current density. IEEE Transactions on Applied Superconductivity, 2003, 13, 3034-3037.	1.7	8
292	Narrow diameter double-wall carbon nanotubes: synthesis, electron microscopy and inelastic light scattering. New Journal of Physics, 2003, 5, 131-131.	2.9	30
293	Double-Walled Carbon Nanotubes in Composite Powders. Journal of Nanoscience and Nanotechnology, 2003, 3, 151-158.	0.9	21
294	CCVD Synthesis and Characterization of Cobalt-Encapsulated Nanoparticles. Chemistry of Materials, 2002, 14, 2553-2558.	6.7	154
295	Carbon Nanotubes by a CVD Method. Part II: Formation of Nanotubes from (Mg, Fe)O Catalysts. Journal of Physical Chemistry B, 2002, 106, 13199-13210.	2.6	42
296	Carbon Nanotubes by a CVD Method. Part I:  Synthesis and Characterization of the (Mg, Fe)O Catalysts. Journal of Physical Chemistry B, 2002, 106, 13186-13198.	2.6	32
297	Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion. Chemical Physics Letters, 2002, 352, 20-25.	2.6	159
298	(Mg,Co)O Solidâ€Solution Precursors for the Largeâ€Scale Synthesis of Carbon Nanotubes by Catalytic Chemical Vapor Deposition. Journal of the American Ceramic Society, 2002, 85, 2666-2669.	3.8	13
299	A Study of the Formation of Single- and Double-Walled Carbon Nanotubes by a CVD Method. Journal of Physical Chemistry B, 2001, 105, 9699-9710.	2.6	117
300	Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes. Chemical Communications, 2001, , 845-846.	4.1	61
301	The characterization of sub-nanometer scale structures within single walled carbon nanotubes. AIP Conference Proceedings, 2001, , .	0.4	5
302	Synthesis of 1D P-block halide crystals within single walled carbon nanotubes. AIP Conference Proceedings, 2001, , .	0.4	6
303	Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 2001, 39, 507-514.	10.3	1,782
304	Catalytic Combustion of Methane over Cobalt–Magnesium Oxide Solid Solution Catalysts. Catalysis Letters, 2001, 75, 65-71.	2.6	18
305	1D P-Block Halide Crystals Confined into Single Walled Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2000, 633, 13151.	0.1	1
306	The Crystallography of Metal Halides formed within Single Walled Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2000, 633, 14311.	0.1	2

#	Article	IF	CITATIONS
307	Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes. Chemical Physics Letters, 2000, 329, 61-65.	2.6	170
308	Mössbauer spectroscopy study of MgAl2O4-matrix nanocomposite powders containing carbon nanotubes and iron-based nanoparticles. Acta Materialia, 2000, 48, 3015-3023.	7.9	36
309	Carbon nanotubes in novel ceramic matrix nanocomposites. Ceramics International, 2000, 26, 677-683.	4.8	370
310	Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Materialia, 2000, 48, 3803-3812.	7.9	438
311	Synthesis of carbon nanotubes–Fe–Al2O3 powders Materials Research Bulletin, 2000, 35, 661-673.	5.2	25
312	1D lanthanide halide crystals inserted into single-walled carbon nanotubes. Chemical Communications, 2000, , 2427-2428.	4.1	73
313	Synthesis of single-walled carbon nanotube–Co–MgO composite powders and extraction of the nanotubes. Journal of Materials Chemistry, 2000, 10, 249-252.	6.7	237
314	Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions. Chemical Physics Letters, 1999, 300, 236-242.	2.6	236
315	Synthesis and characterization of Fe/Co/Ni alloys-MgO nanocomposite powders. Journal of Materials Chemistry, 1999, 9, 1003-1009.	6.7	23
316	An investigation of carbon nanotubes obtained from the decomposition of methane over reduced $Mg < sub > 1a^2 < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < x < x < x < x < x < x < $	2.6	72
317	Metal nanoparticles for the catalytic synthesis of carbon nanotubes. New Journal of Chemistry, 1998, 22, 1229-1237.	2.8	107
318	Synthesis, characterization and thermal behaviour of Fe0.65Co0.35-MgAl2O4 and Fe0.65Ni0.35-MgAl2O4 nanocomposite powders. Journal of Materials Chemistry, 1997, 7, 2457-2467.	6.7	20
319	Synthesis of carboxymethyl Xanthan/ double-walled carbon nanotube hybrid hydrogel nanocomposite for transdermal release of drug. Soft Materials, 0, , 1-15.	1.7	4
320	Fourier transform infrared spectroscopy contribution to disentangle nanomaterial (DWCNT, TiO2) impacts on tomato plants. Environmental Science: Nano, 0, , .	4.3	1