Zetao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1602202/publications.pdf Version: 2024-02-01

ZETAO CHEN

#	Article	IF	CITATIONS
1	Osteoimmunomodulation for the development of advanced bone biomaterials. Materials Today, 2016, 19, 304-321.	14.2	513
2	Osteogenic differentiation of bone marrow MSCs by Î ² -tricalcium phosphate stimulating macrophages via BMP2 signalling pathway. Biomaterials, 2014, 35, 1507-1518.	11.4	262
3	Tuning Chemistry and Topography of Nanoengineered Surfaces to Manipulate Immune Response for Bone Regeneration Applications. ACS Nano, 2017, 11, 4494-4506.	14.6	223
4	Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate. Biomaterials, 2014, 35, 8553-8565.	11.4	215
5	Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Acta Biomaterialia, 2016, 30, 334-344.	8.3	209
6	The effect of osteoimmunomodulation on the osteogenic effects ofÂcobalt incorporated β-tricalcium phosphate. Biomaterials, 2015, 61, 126-138.	11.4	163
7	Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloids and Surfaces B: Biointerfaces, 2018, 164, 58-69.	5.0	147
8	Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent. Biomaterials, 2017, 144, 176-187.	11.4	144
9	Multidirectional Effects of Sr-, Mg-, and Si-Containing Bioceramic Coatings with High Bonding Strength on Inflammation, Osteoclastogenesis, and Osteogenesis. ACS Applied Materials & Interfaces, 2014, 6, 4264-4276.	8.0	136
10	Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages. Nanoscale, 2017, 9, 706-718.	5.6	134
11	TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. Nature Communications, 2021, 12, 2885.	12.8	118
12	Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. Nanoscale, 2017, 9, 18129-18152.	5.6	113
13	Clinoenstatite coatings have high bonding strength, bioactive ion release, and osteoimmunomodulatory effects that enhance inÂvivo osseointegration. Biomaterials, 2015, 71, 35-47.	11.4	88
14	The osteoimmunomodulatory property of a barrier collagen membrane and its manipulation <i>via</i> coating nanometer-sized bioactive glass to improve guided bone regeneration. Biomaterials Science, 2018, 6, 1007-1019.	5.4	64
15	Nutrient element-based bioceramic coatings on titanium alloy stimulating osteogenesis by inducing beneficial osteoimmmunomodulation. Journal of Materials Chemistry B, 2014, 2, 6030-6043.	5.8	54
16	Strategies to direct vascularisation using mesoporous bioactive glass-based biomaterials for bone regeneration. International Materials Reviews, 2017, 62, 392-414.	19.3	44
17	Immunomodulatory effects of mesoporous silica nanoparticles on osteogenesis: From nanoimmunotoxicity to nanoimmunotherapy. Applied Materials Today, 2018, 10, 184-193.	4.3	44
18	Long nonâ€coding RNA and mRNA expression profiles in periâ€implantitis vs periodontitis. Journal of Periodontal Research, 2020, 55, 342-353.	2.7	35

Zetao Chen

#	Article	IF	CITATIONS
19	Immunomodulationâ€Based Strategy for Improving Soft Tissue and Metal Implant Integration and Its Implications in the Development of Metal Soft Tissue Materials. Advanced Functional Materials, 2020, 30, 1910672.	14.9	35
20	Modulating the cobalt dose range to manipulate multisystem cooperation in bone environment: a strategy to resolve the controversies about cobalt use for orthopedic applications. Theranostics, 2020, 10, 1074-1089.	10.0	32
21	Plasma deposited poly-oxazoline nanotextured surfaces dictate osteoimmunomodulation towards ameliorative osteogenesis. Acta Biomaterialia, 2019, 96, 568-581.	8.3	30
22	Influence of osteocytes in the <i>in vitro</i> and <i>in vivo</i> βâ€ŧricalcium phosphateâ€stimulated osteogenesis. Journal of Biomedical Materials Research - Part A, 2014, 102, 2813-2823.	4.0	25
23	Contribution of the <i>in situ</i> release of endogenous cations from xenograft bone driven by fluoride incorporation toward enhanced bone regeneration. Biomaterials Science, 2018, 6, 2951-2964.	5.4	25
24	Activation of Macrophages by Lipopolysaccharide for Assessing the Immunomodulatory Property of Biomaterials . Tissue Engineering - Part A, 2017, 23, 1100-1109.	3.1	24
25	Blood prefabricated hydroxyapatite/tricalcium phosphate induces ectopic vascularized bone formation via modulating the osteoimmune environment. Biomaterials Science, 2018, 6, 2156-2171.	5.4	24
26	A standardized rat burr hole defect model to study maxillofacial bone regeneration. Acta Biomaterialia, 2019, 86, 450-464.	8.3	22
27	Optimizing the bio-degradability and biocompatibility of a biogenic collagen membrane through cross-linking and zinc-doped hydroxyapatite. Acta Biomaterialia, 2022, 143, 159-172.	8.3	22
28	Tuning the immune reaction to manipulate the cell-mediated degradation of a collagen barrier membrane. Acta Biomaterialia, 2020, 109, 95-108.	8.3	19
29	Fluorination Enhances the Osteogenic Capacity of Porcine Hydroxyapatite. Tissue Engineering - Part A, 2018, 24, 1207-1217.	3.1	18
30	Preparation and characterization of fluorinated porcine hydroxyapatite. Dental Materials Journal, 2012, 31, 742-750.	1.8	15
31	Sodium Fluoride under Dose Range of 2.4–24 μM, a Promising Osteoimmunomodulatory Agent for Vascularized Bone Formation. ACS Biomaterials Science and Engineering, 2019, 5, 817-830.	5.2	15
32	Mesopore Controls the Responses of Blood Clotâ€Immune Complex via Modulating Fibrin Network. Advanced Science, 2022, 9, e2103608.	11.2	12
33	Blood Prefabrication Subcutaneous Small Animal Model for the Evaluation of Bone Substitute Materials. ACS Biomaterials Science and Engineering, 2018, 4, 2516-2527.	5.2	11
34	Methoxy-Poly(ethylene glycol) Modified Poly(L-lactide) Enhanced Cell Affinity of Human Bone Marrow Stromal Cells by the Upregulation of 1-Cadherin and Delta-2-catenin. BioMed Research International, 2014, 2014, 1-9.	1.9	9
35	Correlation of anterior overbite with root position and buccal bone thickness of maxillary anterior teeth: a CBCT study. Surgical and Radiologic Anatomy, 2019, 41, 935-942.	1.2	7
36	Multi-faceted effects of mesenchymal stem cells (MSCs) determined by immune microenvironment and their implications on MSC/biomaterial-based inflammatory disease therapy. Applied Materials Today, 2020, 18, 100485.	4.3	7

ZETAO CHEN

#	Article	IF	CITATIONS
37	Immediate Implant Placement with Buccal Bone Augmentation in the Anterior Maxilla with Thin Buccal Plate: A Oneâ€Year Followâ€Up Case Series. Journal of Prosthodontics, 2021, 30, 473-480.	3.7	4
38	Analysis of the sagittal root angle and its correlation with hard and soft tissue indices in anterior teeth for immediate implant evaluation: a retrospective study. BMC Oral Health, 2021, 21, 494.	2.3	4
39	A practical guide to promote informatics-driven efficient biotopographic material development. Bioactive Materials, 2022, 8, 515-528.	15.6	3
40	Mesenchymal stem cells empower T cells in the lymph nodes via MCP-1/PD-L1 axis. Cell Death and Disease, 2022, 13, 365.	6.3	2