Julijus Bogomolovas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1602167/publications.pdf

Version: 2024-02-01

		304743	265206
52	1,911	22	42
papers	citations	h-index	g-index
55	55	55	3106
33	33	55	3100
all docs	docs citations	times ranked	citing authors
55 all docs	55 docs citations	55 times ranked	3106 citing authors

#	Article	IF	CITATIONS
1	Understanding the molecular basis of cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H181-H233.	3.2	14
2	Molecular Mechanisms behind Persistent Presence of Parvovirus B19 in Human Dilated Myocardium. Advances in Experimental Medicine and Biology, 2022, , 181-202.	1.6	3
3	Production and analysis of titin kinase: Exploiting active/inactive kinase homologs in pseudokinase validation. Methods in Enzymology, 2022, 667, 147-181.	1.0	2
4	Regulation of Glucose Metabolism by MuRF1 and Treatment of Myopathy in Diabetic Mice with Small Molecules Targeting MuRF1. International Journal of Molecular Sciences, 2021, 22, 2225.	4.1	10
5	mTORC2 controls the activity of PKC and Akt by phosphorylating a conserved TOR interaction motif. Science Signaling, 2021, 14, .	3.6	64
6	Molecular Characterisation of Titin N2A and Its Binding of CARP Reveals a Titin/Actin Cross-linking Mechanism. Journal of Molecular Biology, 2021, 433, 166901.	4.2	22
7	The Effect of a Unique Region of Parvovirus B19 Capsid Protein VP1 on Endothelial Cells. Biomolecules, 2021, 11, 606.	4.0	2
8	Desmosomal COP9 regulates proteome degradation in arrhythmogenic right ventricular dysplasia/cardiomyopathy. FASEB Journal, 2021, 35, .	0.5	0
9	Desmosomal COP9 regulates proteome degradation in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Journal of Clinical Investigation, 2021, 131, .	8.2	18
10	Titin kinase ubiquitination aligns autophagy receptors with mechanical signals in the sarcomere. EMBO Reports, 2021, 22, e48018.	4.5	22
11	Atypical ALPK2 kinase is not essential for cardiac development and function. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1509-H1515.	3.2	3
12	Systemic AAV9.LAMP2B injection reverses metabolic and physiologic multiorgan dysfunction in a murine model of Danon disease. Science Translational Medicine, 2020, 12, .	12.4	49
13	The Role of Cardiac T-Cadherin in the Indicating Heart Failure Severity of Patients with Non-Ischemic Dilated Cardiomyopathy. Medicina (Lithuania), 2020, 56, 27.	2.0	5
14	MuRF1 and MuRF2 are key players in skeletal muscle regeneration involving myogenic deficit and deregulation of the chromatinâ€remodeling complex. JCSM Rapid Communications, 2019, 2, 1-25.	1.6	6
15	Selfâ€Assembling Proteins as Highâ€Performance Substrates for Embryonic Stem Cell Selfâ€Renewal. Advanced Materials, 2019, 31, 1807521.	21.0	6
16	PKC and PKN in heart disease. Journal of Molecular and Cellular Cardiology, 2019, 128, 212-226.	1.9	50
17	P209L mutation in <i>Bag3</i> does not cause cardiomyopathy in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H392-H399.	3.2	18
18	The BAG3-dependent and -independent roles of cardiac small heat shock proteins. JCI Insight, 2019, 4, .	5.0	19

#	Article	IF	CITATIONS
19	Infarct Fibroblasts Do Not Derive From Bone Marrow Lineages. Circulation Research, 2018, 122, 583-590.	4.5	65
20	<i>Tbx20</i> Is Required in Mid-Gestation Cardiomyocytes and Plays a Central Role in Atrial Development. Circulation Research, 2018, 123, 428-442.	4.5	57
21	HSPB7 is indispensable for heart development by modulating actin filament assembly. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11956-11961.	7.1	51
22	The Role of Serum Adiponectin for Outcome Prediction in Patients with Dilated Cardiomyopathy and Advanced Heart Failure. BioMed Research International, 2017, 2017, 1-13.	1.9	15
23	Loss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy. Journal of Clinical Investigation, 2017, 127, 3189-3200.	8.2	107
24	A Novel Murine Model of Parvovirus Associated Dilated Cardiomyopathy Induced by Immunization with VP1-Unique Region of Parvovirus B19. BioMed Research International, 2016, 2016, 1-9.	1.9	11
25	Exploration of pathomechanisms triggered by a single-nucleotide polymorphism in titin's I-band: the cardiomyopathy-linked mutation T2580I. Open Biology, 2016, 6, 160114.	3.6	17
26	CARP interacts with titin at a unique helical N2A sequence and at the domain lg81 to form a structured complex. FEBS Letters, 2016, 590, 3098-3110.	2.8	22
27	Cardiac specific titin N2B exon is a novel sensitive serological marker for cardiac injury. International Journal of Cardiology, 2016, 212, 232-234.	1.7	11
28	Titin antibodies in "seronegative―myasthenia gravis — A new role for an old antigen. Journal of Neuroimmunology, 2016, 292, 108-115.	2.3	57
29	Induction of Ankrd1 in Dilated Cardiomyopathy Correlates with the Heart Failure Progression. BioMed Research International, 2015, 2015, 1-9.	1.9	30
30	Molecular mechanisms behind progressing chronic inflammatory dilated cardiomyopathy. BMC Cardiovascular Disorders, 2015, 15, 26.	1.7	18
31	Molecular basis for the fold organization and sarcomeric targeting of the muscle atrogin MuRF1. Open Biology, 2014, 4, 130172.	3.6	17
32	Mechanism of Fibrosis in Inflammatory Dilated Cardiomyopathy. Journal of Cardiac Failure, 2014, 20, S81.	1.7	0
33	Quantification of myocardial fibrosis by digital image analysis and interactive stereology. Diagnostic Pathology, 2014, 9, 114.	2.0	34
34	PM051 The role of collagen in virus-positive dilated cardiomyopathy. , 2014, 9, e71.		0
35	Determining the Molecular Mechanisms that Link a Titin Mutation to Cardiomyopathy. Biophysical Journal, 2014, 106, 774a.	0.5	0
36	Titin kinase is an inactive pseudokinase scaffold that supports MuRF1 recruitment to the sarcomeric M-line. Open Biology, 2014, 4, 140041.	3.6	52

#	Article	IF	Citations
37	Regulation of nicotinic acetylcholine receptor turnover by MuRF1 connects muscle activity to endo/lysosomal and atrophy pathways. Age, 2013, 35, 1663-1674.	3.0	55
38	Single Molecule Force Spectroscopy on Titin Implicates Immunoglobulin Domain Stability as a Cardiac Disease Mechanism*. Journal of Biological Chemistry, 2013, 288, 5303-5315.	3 . 4	38
39	Identification of an N-terminal inhibitory extension as the primary mechanosensory regulator of twitchin kinase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13608-13613.	7.1	25
40	Stretching of Twitchin Kinase. Biophysical Journal, 2012, 102, 361a-362a.	0.5	0
41	The Multifunctional Calcium/Calmodulin-Dependent Protein Kinase II Delta (CaMKIIÎ) Phosphorylates Titin N2B and PEVK Spring Elements. Biophysical Journal, 2012, 102, 559a.	0.5	4
42	Single Molecule Studies of a Titin Mutation Linked to Cardiac Disease. Biophysical Journal, 2012, 102, 558a-559a.	0.5	0
43	Giant Proteins. , 2012, , 367-367.		0
44	Comparison of Human and Mouse Recombinant Titin N2B Fragment as a Substrate for PKA and PKG. Biophysical Journal, 2011, 100, 455a.	0.5	0
45	Genetic Variation in Titin in Arrhythmogenic Right Ventricular Cardiomyopathy–Overlap Syndromes. Circulation, 2011, 124, 876-885.	1.6	263
46	Titin-Actin Interaction: PEVK-Actin-Based Viscosity in a Large Animal. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-8.	3.0	35
47	MuRF1 is a muscle fiber-type II associated factor and together with MuRF2 regulates type-II fiber trophicity and maintenance. Journal of Structural Biology, 2010, 170, 344-353.	2.8	75
48	The effects of PKCα phosphorylation on the extensibility of titin's PEVK element. Journal of Structural Biology, 2010, 170, 270-277.	2.8	33
49	Dynamic distribution of muscle-specific calpain in mice has a key role in physical-stress adaptation and is impaired in muscular dystrophy. Journal of Clinical Investigation, 2010, 120, 2672-2683.	8.2	85
50	Single Molecule Force Spectroscopy of the Cardiac Titin N2B Element. Journal of Biological Chemistry, 2009, 284, 13914-13923.	3.4	50
51	PKC Phosphorylation of Titin's PEVK Element. Circulation Research, 2009, 105, 631-638.	4.5	238
52	Screening of fusion partners for high yield expression and purification of bioactive viscotoxins. Protein Expression and Purification, 2009, 64, 16-23.	1.3	133