Tomo Saric

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1602121/publications.pdf Version: 2024-02-01

TOMO SADIC

#	Article	IF	CITATIONS
1	Salicylic diamines selectively eliminate residual undifferentiated cells from pluripotent stem cell-derived cardiomyocyte preparations. Scientific Reports, 2021, 11, 2391.	3.3	3
2	hiPSC-Derived Epidermal Keratinocytes from Ichthyosis Patients Show Altered Expression of Cornification Markers. International Journal of Molecular Sciences, 2021, 22, 1785.	4.1	4
3	Stem cells-derived natural killer cells for cancer immunotherapy: current protocols, feasibility, and benefits of ex vivo generated natural killer cells in treatment of advanced solid tumors. Cancer Immunology, Immunotherapy, 2021, 70, 3369-3395.	4.2	3
4	Persistence of intramyocardially transplanted murine induced pluripotent stem cell-derived cardiomyocytes from different developmental stages. Stem Cell Research and Therapy, 2021, 12, 46.	5.5	7
5	Co-transplantation of Mesenchymal Stromal Cells and Induced Pluripotent Stem Cell-Derived Cardiomyocytes Improves Cardiac Function After Myocardial Damage. Frontiers in Cardiovascular Medicine, 2021, 8, 794690.	2.4	6
6	Human pluripotent stem cell line (HDZi001-A) derived from a patient carrying the ARVC-5 associated mutation TMEM43-p.S358L. Stem Cell Research, 2020, 48, 101957.	0.7	6
7	Acquisition of chromosome 1q duplication in parental and genomeâ€edited humanâ€induced pluripotent stem cellâ€derived neural stem cells results in their higher proliferation rate in vitro and in vivo. Cell Proliferation, 2020, 53, e12892.	5.3	6
8	Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics, 2019, 9, 7222-7238.	10.0	52
9	Ketamine Increases Proliferation of Human iPSC-Derived Neuronal Progenitor Cells via Insulin-Like Growth Factor 2 and Independent of the NMDA Receptor. Cells, 2019, 8, 1139.	4.1	10
10	Acid-Sensitive Ion Channels Are Expressed in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells and Development, 2019, 28, 920-932.	2.1	11
11	Modeling the Pathological Long-Range Regulatory Effects of Human Structural Variation with Patient-Specific hiPSCs. Cell Stem Cell, 2019, 24, 736-752.e12.	11.1	90
12	Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Research and Therapy, 2019, 10, 341.	5.5	130
13	In Vitro Grown Micro-Tissues for Cardiac Cell Replacement Therapy in Vivo. Cellular Physiology and Biochemistry, 2019, 52, 1309-1324.	1.6	5
14	Effects of hawthorn (Crataegus pentagyna) leaf extract on electrophysiologic properties of cardiomyocytes derived from human cardiac arrhythmiaâ€specific induced pluripotent stem cells. FASEB Journal, 2018, 32, 1440-1451.	0.5	19
15	Recapitulation of Human Neural Microenvironment Signatures in iPSC-Derived NPC 3D Differentiation. Stem Cell Reports, 2018, 11, 552-564.	4.8	59
16	Myeloperoxidase Mediates Postischemic Arrhythmogenic Ventricular Remodeling. Circulation Research, 2017, 121, 56-70.	4.5	59
17	Rapid establishment of the European Bank for induced Pluripotent Stem Cells (EBiSC) - the Hot Start experience. Stem Cell Research, 2017, 20, 105-114.	0.7	51
18	Decreased neural precursor cell pool in NADPH oxidase 2-deficiency: From mouse brain to neural differentiation of patient derived iPSC. Redox Biology, 2017, 13, 82-93.	9.0	25

#	Article	IF	CITATIONS
19	<scp>CPAP</scp> promotes timely cilium disassembly to maintain neural progenitor pool. EMBO Journal, 2016, 35, 803-819.	7.8	208
20	Murine transgenic iPS cell line for monitoring and selection of cardiomyocytes. Stem Cell Research, 2016, 17, 266-272.	0.7	7
21	From Early Embryonic to Adult Stage: Comparative Study of Action Potentials of Native and Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells and Development, 2016, 25, 1397-1406.	2.1	15
22	Effective Hypothermic Storage of Human Pluripotent Stem Cell-Derived Cardiomyocytes Compatible With Global Distribution of Cells for Clinical Applications and Toxicology Testing. Stem Cells Translational Medicine, 2016, 5, 658-669.	3.3	40
23	Generation of human induced pluripotent stem cell line from a patient with a long QT syndrome type 2. Stem Cell Research, 2016, 16, 304-307.	0.7	11
24	Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor. Stem Cell Reports, 2016, 6, 539-551.	4.8	63
25	Susceptibility of murine induced pluripotent stem cell-derived cardiomyocytes to hypoxia and nutrient deprivation. Stem Cell Research and Therapy, 2015, 6, 83.	5.5	31
26	Dynamic Support Culture of Murine Skeletal Muscle-Derived Stem Cells Improves Their Cardiogenic Potential <i>In Vitro</i> . Stem Cells International, 2015, 2015, 1-12.	2.5	1
27	Regionally diverse mitochondrial calcium signaling regulates spontaneous pacing in developing cardiomyocytes. Cell Calcium, 2015, 57, 321-336.	2.4	32
28	Ascorbic Acid-Induced Cardiac Differentiation of Murine Pluripotent Stem Cells: Transcriptional Profiling and Effect of a Small Molecule Synergist of Wnt/β-Catenin Signaling Pathway. Cellular Physiology and Biochemistry, 2015, 36, 810-830.	1.6	23
29	Calcium Imaging in Pluripotent Stem Cell-Derived Cardiac Myocytes. Methods in Molecular Biology, 2015, 1353, 131-146.	0.9	10
30	The TMEM43 Newfoundland mutation p.S358L causing ARVC-5 was imported from Europe and increases the stiffness of the cell nucleus. European Heart Journal, 2015, 36, 872-881.	2.2	56
31	Human cardiac extracellular matrix supports myocardial lineage commitment of pluripotent stem cellsâ€. European Journal of Cardio-thoracic Surgery, 2015, 47, 416-425.	1.4	52
32	Chromosome Tracking in Fused Cells by Single Nucleotide Polymorphisms. Methods in Molecular Biology, 2015, 1313, 95-106.	0.9	2
33	Bioluminescent Imaging of Genetically Selected Induced Pluripotent Stem Cell-Derived Cardiomyocytes after Transplantation into Infarcted Heart of Syngeneic Recipients. PLoS ONE, 2014, 9, e107363.	2.5	21
34	Mesenchymal Stem Cells and Their Conditioned Medium Improve Integration of Purified Induced Pluripotent Stem Cell–Derived Cardiomyocyte Clusters into Myocardial Tissue. Stem Cells and Development, 2014, 23, 643-653.	2.1	18
35	Preparation of cardiac extracellular matrix scaffolds by decellularization of human myocardium. Journal of Biomedical Materials Research - Part A, 2014, 102, 3263-3272.	4.0	77
36	Conserved TCP domain of Sas-4/CPAP is essential for pericentriolar material tethering during centrosome biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E354-63.	7.1	70

#	Article	IF	CITATIONS
37	Induced pluripotent stem cells as cardiac arrhythmic <i>in vitro</i> models and the impact for drug discovery. Expert Opinion on Drug Discovery, 2014, 9, 55-76.	5.0	10
38	Combining Hypoxia and Bioreactor Hydrodynamics Boosts Induced Pluripotent Stem Cell Differentiation Towards Cardiomyocytes. Stem Cell Reviews and Reports, 2014, 10, 786-801.	5.6	65
39	Epigenetic Rejuvenation of Mesenchymal Stromal Cells Derived from Induced Pluripotent Stem Cells. Stem Cell Reports, 2014, 3, 414-422.	4.8	192
40	Optimized Generation of Functional Neutrophils and Macrophages from Patient-Specific Induced Pluripotent Stem Cells: <i>Ex Vivo</i> Models of X ⁰ -Linked, AR22 ⁰ - and AR47 ⁰ - Chronic Granulomatous Diseases. BioResearch Open Access, 2014, 3, 311-326.	2.6	30
41	Calcium Signaling Properties of Control and CPVT-Expressing Human ipscs-Derived Cardiomyocytes. Biophysical Journal, 2013, 104, 297a.	0.5	0
42	Electrophysiological integration and action potential properties of transplanted cardiomyocytes derived from induced pluripotent stem cells. Cardiovascular Research, 2013, 100, 432-440.	3.8	37
43	Induced Pluripotent Mesenchymal Stromal Cell Clones Retain Donor-derived Differences in DNA Methylation Profiles. Molecular Therapy, 2013, 21, 240-250.	8.2	54
44	Optimization of X-linked chronic granulomatous disease modelization by using patient-specific induced pluripotent stem cells. Experimental Hematology, 2013, 41, S28.	0.4	0
45	Expansion and Differentiation of Germline-Derived Pluripotent Stem Cells on Biomaterials. Tissue Engineering - Part A, 2013, 19, 1067-1080.	3.1	4
46	Ca2+ signaling in human induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) from normal and catecholaminergic polymorphic ventricular tachycardia (CPVT)-afflicted subjects. Cell Calcium, 2013, 54, 57-70.	2.4	93
47	Pluripotent stem cells escape from senescence-associated DNA methylation changes. Genome Research, 2013, 23, 248-259.	5.5	107
48	Long-term persistence, functional integration and electrophysiological properties of transplanted cardiomyocytes derived from induced pluripotent stem cells. European Heart Journal, 2013, 34, 1603-1603.	2.2	0
49	The Novel Desmin Mutant p.A120D Impairs Filament Formation, Prevents Intercalated Disk Localization, and Causes Sudden Cardiac Death. Circulation: Cardiovascular Genetics, 2013, 6, 615-623.	5.1	46
50	Baicalin Maintains Late-Stage Functional Cardiomyocytes in Embryoid Bodies Derived from Murine Embryonic Stem Cells. Cellular Physiology and Biochemistry, 2013, 32, 86-99.	1.6	25
51	The L-type Ca2+ Channels Blocker Nifedipine Represses Mesodermal Fate Determination in Murine Embryonic Stem Cells. PLoS ONE, 2013, 8, e53407.	2.5	19
52	The Disease-Specific Phenotype in Cardiomyocytes Derived from Induced Pluripotent Stem Cells of Two Long QT Syndrome Type 3 Patients. PLoS ONE, 2013, 8, e83005.	2.5	77
53	Preparation of cardiac extracellular matrix scaffolds by decellularization of human myocardium. Journal of Biomedical Materials Research - Part A, 2013, 102, n/a-n/a.	4.0	59
54	Human-Induced Pluripotent Stem Cells, Embryonic Stem Cells, and Their Cardiomyocyte Derivatives: An Overview. , 2013, , 321-345.		0

#	Article	IF	CITATIONS
55	Dual Color Photoactivation Localization Microscopy of Cardiomyopathy-associated Desmin Mutants. Journal of Biological Chemistry, 2012, 287, 16047-16057.	3.4	49
56	<i>In vitro</i> Model for Assessing Arrhythmogenic Properties of Drugs Based on High-resolution Impedance Measurements. Cellular Physiology and Biochemistry, 2012, 29, 819-832.	1.6	59
57	Spontaneous Ca2+ Oscillations in Beating Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (HIPSC-CM) and Rat Neonatal Cardiomyocytes (RN-CM). Biophysical Journal, 2012, 102, 506a.	0.5	0
58	Ca2+ Signaling in Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells (hIPSC). Biophysical Journal, 2012, 102, 506a.	0.5	0
59	Fibroblasts Support Functional Integration of Purified Embryonic Stem Cell-Derived Cardiomyocytes into Avital Myocardial Tissue. Stem Cells and Development, 2011, 20, 821-830.	2.1	12
60	Cardiac Cell Therapies: The Next Generation. Cardiovascular Therapeutics, 2011, 29, 2-16.	2.5	18
61	<i>In vitro</i> Modeling of Ryanodine Receptor 2 Dysfunction Using Human Induced Pluripotent Stem Cells. Cellular Physiology and Biochemistry, 2011, 28, 579-592.	1.6	179
62	Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells are highly similar. BMC Developmental Biology, 2010, 10, 98.	2.1	76
63	A Cre-based double fluorescence indicator system for monitoring cell fusion events and selection of fused cells. BioTechniques, 2010, 48, 113-120.	1.8	2
64	Fibroblasts Facilitate the Engraftment of Embryonic Stem Cell-Derived Cardiomyocytes on Three-Dimensional Collagen Matrices and Aggregation in Hanging Drops. Stem Cells and Development, 2010, 19, 1589-1599.	2.1	37
65	Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells. FASEB Journal, 2010, 24, 2739-2751.	0.5	88
66	Cardiac Myocytes Derived from Murine Reprogrammed Fibroblasts: Intact Hormonal Regulation, Cardiac Ion Channel Expression and Development of Contractility. Cellular Physiology and Biochemistry, 2009, 24, 73-86.	1.6	88
67	Role of Natural-Killer Group 2 Member D Ligands and Intercellular Adhesion Molecule 1 in Natural Killer Cell-Mediated Lysis of Murine Embryonic Stem Cells and Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells, 2009, 27, 307-316.	3.2	48
68	Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells <i>in vitro</i> . FASEB Journal, 2009, 23, 4168-4180.	0.5	119
69	Alternative Embryonic Stem Cell Sources. , 2009, , 101-143.		1
70	Embryonic Stem Cells, Cardiomyoplasty, and the Risk of Teratoma Formation. , 2009, , 229-260.		0
71	Scalable Selection of Hepatocyte- and Hepatocyte Precursor-Like Cells from Culture of Differentiating Transgenically Modified Murine Embryonic Stem Cells. Stem Cells, 2008, 26, 2245-2256.	3.2	22
72	Biological pacemakers: characterization in an in vitro coculture model. Journal of Electrocardiology, 2008, 41, 562-566.	0.9	18

#	Article	IF	CITATIONS
73	Immunological Barriers to Embryonic Stem Cell-Derived Therapies. Cells Tissues Organs, 2008, 188, 78-90.	2.3	45
74	Stem cells and nuclear reprogramming. Minimally Invasive Therapy and Allied Technologies, 2008, 17, 64-78.	1.2	10
75	Infection of Myeloid Dendritic Cells with <i>Listeria monocytogenes</i> Leads to the Suppression of T Cell Function by Multiple Inhibitory Mechanisms. Journal of Immunology, 2008, 181, 4976-4988.	0.8	32
76	Embryonic Stem Cells and Their Therapeutic Potential. , 2008, , 29-57.		0
77	Serpin-6 Expression Protects Embryonic Stem Cells from Lysis by Antigen-Specific CTL. Journal of Immunology, 2007, 178, 3390-3399.	0.8	50
78	Concise Review: Role and Function of the Ubiquitin-Proteasome System in Mammalian Stem and Progenitor Cells. Stem Cells, 2007, 25, 2408-2418.	3.2	72
79	CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood, 2006, 108, 228-237.	1.4	224
80	Indoleamine 2,3-dioxygenase–expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection. Journal of Clinical Investigation, 2006, 116, 3160-3170.	8.2	123
81	Regulation of the multidrug resistance transporter P-glycoprotein in multicellular prostate tumor spheroids by hyperthermia and reactive oxygen species. International Journal of Cancer, 2005, 113, 229-240.	5.1	70
82	Pathway for Degradation of Peptides Generated by Proteasomes. Journal of Biological Chemistry, 2004, 279, 46723-46732.	3.4	164
83	Protein Degradation. , 2004, , 484-492.		0
84	ERAP1 and MHC Class I Antigen Presentation. , 2004, , 145-178.		0
85	Non-covalent interaction of ubiquitin with insulin-degrading enzyme. Molecular and Cellular Endocrinology, 2003, 204, 11-20.	3.2	28
86	The Cytosolic Endopeptidase, Thimet Oligopeptidase, Destroys Antigenic Peptides and Limits the Extent of MHC Class I Antigen Presentation. Immunity, 2003, 18, 429-440.	14.3	137
87	Protein degradation and the generation of MHC class I-presented peptides. Advances in Immunology, 2002, 80, 1-70.	2.2	300
88	The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Molecular Immunology, 2002, 39, 147-164.	2.2	299
89	An IFN-γ–induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I–presented peptides. Nature Immunology, 2002, 3, 1169-1176.	14.5	486
90	The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nature Immunology, 2002, 3, 1177-1184.	14.5	448

#ARTICLEIFCITATIONS91Major Histocompatibility Complex Class I-presented Antigenic Peptides Are Degraded in Cytosolic
Extracts Primarily by Thimet Oligopeptidase. Journal of Biological Chemistry, 2001, 276, 36474.36481.3.412892Identification of two distinct regions of allelic imbalance on chromosome 18q in metastatic prostate
cancer., 2000, 85, 654-658.2993Genetic pattern of prostate cancer progression., 1999, 81, 219-224.7094Human Pluripotent Stem Cell Applications in Drug Discovery and Toxicology â€" An overview., 0, , .1