Yida Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1601861/publications.pdf

Version: 2024-02-01

430874 477307 2,400 29 18 29 h-index citations g-index papers 29 29 29 1143 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Boosting extraction of Pb in contaminated soil via interfacial solar evaporation of multifunctional sponge. Green Energy and Environment, 2023, 8, 1459-1468.	8.7	8
2	Towards sustainable saline agriculture: Interfacial solar evaporation for simultaneous seawater desalination and saline soil remediation. Water Research, 2022, 212, 118099.	11.3	110
3	A biomimetic interfacial solar evaporator for heavy metal soil remediation. Chemical Engineering Journal, 2022, 435, 134793.	12.7	31
4	A 3D Opened Hollow Photothermal Evaporator for Highly Efficient Solar Steam Generation. Solar Rrl, 2022, 6, .	5.8	30
5	More from less: improving solar steam generation by selectively removing a portion of evaporation surface. Science Bulletin, 2022, 67, 1572-1580.	9.0	122
6	Same materials, bigger output: A reversibly transformable 2D–3D photothermal evaporator for highly efficient solar steam generation. Nano Energy, 2021, 79, 105477.	16.0	228
7	Allâ€Cold Evaporation under One Sun with Zero Energy Loss by Using a Heatsink Inspired Solar Evaporator. Advanced Science, 2021, 8, 2002501.	11.2	225
8	A Hollow and Compressible 3D Photothermal Evaporator for Highly Efficient Solar Steam Generation without Energy Loss. Solar Rrl, 2021, 5, 2100053.	5.8	127
9	Surface Patterning of Two-Dimensional Nanostructure-Embedded Photothermal Hydrogels for High-Yield Solar Steam Generation. ACS Nano, 2021, 15, 10366-10376.	14.6	230
10	Dualâ€Zone Photothermal Evaporator for Antisalt Accumulation and Highly Efficient Solar Steam Generation. Advanced Functional Materials, 2021, 31, 2102618.	14.9	226
11	Enhancing solar steam generation using a highly thermally conductive evaporator support. Science Bulletin, 2021, 66, 2479-2488.	9.0	159
12	A general method for selectively coating photothermal materials on 3D porous substrate surfaces towards cost-effective and highly efficient solar steam generation. Journal of Materials Chemistry A, 2020, 8, 24703-24709.	10.3	65
13	Reversing heat conduction loss: Extracting energy from bulk water to enhance solar steam generation. Nano Energy, 2020, 78, 105269.	16.0	215
14	Stackable nickel–cobalt@polydopamine nanosheet based photothermal sponges for highly efficient solar steam generation. Journal of Materials Chemistry A, 2020, 8, 11665-11673.	10.3	184
15	Boosting solar steam generation by structure enhanced energy management. Science Bulletin, 2020, 65, 1380-1388.	9.0	184
16	Upconversion emission enhancement mechanisms of Nd ³⁺ -sensitized NaYF ₄ :Yb ³⁺ ,Er ³⁺ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decay rate and energy-transfer enhancement. Journal of Materials Chemistry C, 2017, 5, 8535-8544.	5 . 5	47
17	Au nanoparticles embedded inverse opal photonic crystals as substrates for upconversion emission enhancement. Journal of the American Ceramic Society, 2017, 100, 988-997.	3.8	13
18	Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption. Optical Materials Express, 2017, 7, 1188.	3.0	21

#	Article	IF	CITATIONS
19	Photoluminescence Enhancement of SiO ₂ â€Coated LaPO ₄ :Eu ³⁺ Inverse Opals by Surface Plasmon Resonance of Ag Nanoparticles. Journal of the American Ceramic Society, 2016, 99, 3330-3335.	3.8	12
20	Photoluminescence and energy transfer investigation from SiO 2 : Tb, Au inverse opals to rhodamine-B dyes. Optical Materials, 2016, 60, 373-382.	3.6	3
21	Tunable and ultra-broad plasmon enhanced upconversion emission of NaYF ₄ :Yb ³⁺ , Er ³⁺ nanoparticles deposited on Au films with papilla Au nanoparticles. RSC Advances, 2016, 6, 56963-56970.	3.6	7
22	Upconversion luminescence enhancement of SiO2:Yb3+, Tb3+ inverse opal photonic crystal by gold nanoparticles. Journal of Non-Crystalline Solids, 2016, 437, 53-57.	3.1	7
23	Li ⁺ lons Doping Enhanced Photoluminescence Properties and Mechanisms in LaPO ₄ :Eu ³ ⁺ Three Dimensional Ordered Macroporous Films. Science of Advanced Materials, 2016, 8, 1484-1489.	0.7	3
24	Preparation and Enhanced Luminescence of Au Nanoparticles Including SiO ₂ :Tb ³⁺ Threeâ€Dimensional Ordered Macroporous Films. Journal of the American Ceramic Society, 2015, 98, 2011-2013.	3.8	4
25	Photoluminescence enhancement of Eu ³⁺ ions by Ag species in SiO ₂ three-dimensionally ordered macroporous materials. Journal of Materials Chemistry C, 2015, 3, 7699-7708.	5.5	31
26	Enhanced upconversion emission of three dimensionally ordered macroporous films Bi2Ti2O7:Er3+, Yb3+ with silica shell. Ceramics International, 2015, 41, 11770-11775.	4.8	9
27	Preparation and photoluminescence enhancement of silica-coated LaPO4:Eu3+ three dimensional ordered macroporous films. Ceramics International, 2015, 41, 8109-8113.	4.8	10
28	Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF ₄ : Yb ³⁺ , Er ³⁺ Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25211-25218.	8.0	88
29	Ag Nanoparticles Enhanced Upconversion Luminescence in YbPO ₄ :Er ³ ⁺ Three Dimensional Ordered Macroporous Materials. Science of Advanced Materials, 2015, 7, 2715-2720.	0.7	1