Kevin V Lemley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1601389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of disease progression on the podocyte cell cycle in Alport Syndrome. Kidney International, 2022, 101, 106-118.	5.2	7
2	Intravital imaging reveals glomerular capillary distension and endothelial and immune cell activation early in Alport syndrome. JCI Insight, 2022, 7, .	5.0	7
3	Kidney Fibrosis Assessment by CT Using Machine Learning. Kidney360, 2022, 3, 1-2.	2.1	2
4	APOL1 genotype-associated morphologic changes among patients with focal segmental glomerulosclerosis. Pediatric Nephrology, 2021, 36, 2747-2757.	1.7	3
5	Pima Indian Contributions to Our Understanding of Diabetic Kidney Disease. Diabetes, 2021, 70, 1603-1616.	0.6	15
6	AMPK mediates regulation of glomerular volume and podocyte survival. JCI Insight, 2021, 6, .	5.0	16
7	The longitudinal relationship between patient-reported outcomes and clinical characteristics among patients with focal segmental glomerulosclerosis in the Nephrotic Syndrome Study Network. CKJ: Clinical Kidney Journal, 2020, 13, 597-606.	2.9	14
8	Machine Learning Comes to Nephrology. Journal of the American Society of Nephrology: JASN, 2019, 30, 1780-1781.	6.1	15
9	Statistical methods for building better biomarkers of chronic kidney disease. Statistics in Medicine, 2019, 38, 1903-1917.	1.6	7
10	Plasma Zonulin Levels in Childhood Nephrotic Syndrome. Frontiers in Pediatrics, 2019, 7, 197.	1.9	12
11	Focal Segmental Glomerulosclerosis, Pediatric. , 2019, , 169-192.		0
12	CureGN Study Rationale, Design, and Methods: Establishing a Large Prospective Observational Study of Glomerular Disease. American Journal of Kidney Diseases, 2019, 73, 218-229.	1.9	68
13	Interstitial fibrosis scored on whole-slide digital imaging of kidney biopsies is a predictor of outcome in proteinuric glomerulopathies. Nephrology Dialysis Transplantation, 2018, 33, 310-318.	0.7	85
14	A molecular morphometric approach to diabeticÂkidney disease can link structure toÂfunction and outcome. Kidney International, 2018, 93, 439-449.	5.2	54
15	Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis. Pediatric Nephrology, 2017, 32, 405-417.	1.7	61
16	Potential relevance of shear stress for slit diaphragm and podocyte function. Kidney International, 2017, 91, 1283-1286.	5.2	48
17	Mechanical challenges to the glomerulus and podocyte loss: evolution of a paradigm. Pflugers Archiv European Journal of Physiology, 2017, 469, 959-963.	2.8	8
18	Combined use of electron microscopy and intravital imaging captures morphological and functional features of podocyte detachment. Pflugers Archiv European Journal of Physiology, 2017, 469, 965-974.	2.8	11

Kevin V Lemley

#	Article	IF	CITATIONS
19	Focal Segmental Glomerulosclerosis, Pediatric. , 2017, , 1-24.		Ο
20	Advanced Glycation End Products Predict Loss of Renal Function and Correlate With Lesions of Diabetic Kidney Disease in American Indians With Type 2 Diabetes. Diabetes, 2016, 65, 3744-3753.	0.6	63
21	Glomerular pathology and the progression of chronic kidney disease. American Journal of Physiology - Renal Physiology, 2016, 310, F1385-F1388.	2.7	22
22	The Effect of a Gluten-Free Diet in Children With Difficult-to-Manage Nephrotic Syndrome. Pediatrics, 2016, 138, .	2.1	17
23	Structural Predictors of Loss of Renal Function in American Indians with Type 2 Diabetes. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 254-261.	4.5	79
24	Tumor necrosis factor receptors 1 and 2 are associated with early glomerular lesions in type 2 diabetes. Kidney International, 2016, 89, 226-234.	5.2	57
25	Integrative Genomics Identifies Novel Associations with APOL1 Risk Genotypes in Black NEPTUNE Subjects. Journal of the American Society of Nephrology: JASN, 2016, 27, 814-823.	6.1	110
26	Morphometry Predicts Early GFR Change in Primary Proteinuric Glomerulopathies: A Longitudinal Cohort Study Using Generalized Estimating Equations. PLoS ONE, 2016, 11, e0157148.	2.5	17
27	A Potential Role for Mechanical Forces in the Detachment of Podocytes and the Progression of CKD. Journal of the American Society of Nephrology: JASN, 2015, 26, 258-269.	6.1	214
28	Morphology in the Digital Age: Integrating High-Resolution Description of Structural Alterations With Phenotypes and Genotypes. Seminars in Nephrology, 2015, 35, 266-278.	1.6	27
29	Efficacy of rituximab in challenging nephrotic syndrome. Nature Reviews Nephrology, 2015, 11, 257-258.	9.6	1
30	Effects of gluten-free, dairy-free diet on childhood nephrotic syndrome and gut microbiota. Pediatric Research, 2015, 77, 252-255.	2.3	32
31	LMX1B mutations with nails and kneecaps: a new paradigm?. Nephrology Dialysis Transplantation, 2014, 29, 9-12.	0.7	40
32	An unusual case of hypercalcemia in a patient with renal insufficiency: Question. Pediatric Nephrology, 2014, 29, 1529-1530.	1.7	1
33	An unusual case of hypercalcemia in a patient with renal insufficiency: Answer. Pediatric Nephrology, 2014, 29, 1531-1533.	1.7	0
34	Estimation of Glomerular Podocyte Number. Journal of the American Society of Nephrology: JASN, 2013, 24, 1193-1202.	6.1	35
35	The podocyte's response to stress: the enigma of foot process effacement. American Journal of Physiology - Renal Physiology, 2013, 304, F333-F347.	2.7	231
36	Digital Pathology Evaluation in the Multicenter Nephrotic Syndrome Study Network (NEPTUNE). Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1449-1459.	4.5	80

KEVIN V LEMLEY

#	Article	IF	CITATIONS
37	Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney International, 2013, 83, 749-756.	5.2	268
38	A Novel Source of Cultured Podocytes. PLoS ONE, 2013, 8, e81812.	2.5	39
39	Protecting podocytes: how good do we need to be?. Kidney International, 2012, 81, 9-11.	5.2	7
40	Injection of Amniotic Fluid Stem Cells Delays Progression of Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2012, 23, 661-673.	6.1	117
41	When to initiate ACEI/ARB therapy in patients with type 1 and 2 diabetes. Pediatric Nephrology, 2010, 25, 2021-2034.	1.7	5
42	Kidney disease in nail–patella syndrome. Pediatric Nephrology, 2009, 24, 2345-2354.	1.7	83
43	Diabetes and chronic kidney disease: lessons from the Pima Indians. Pediatric Nephrology, 2008, 23, 1933-1940.	1.7	24
44	Prediction of early progression in recently diagnosed IgA nephropathy. Nephrology Dialysis Transplantation, 2007, 23, 213-222.	0.7	21
45	An introduction to biomarkers: applications to chronic kidney disease. Pediatric Nephrology, 2007, 22, 1849-1859.	1.7	19
46	Modeling GFR trajectories in diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2005, 289, F863-F870.	2.7	23
47	A basis for accelerated progression of diabetic nephropathy in Pima Indians. Kidney International, 2003, 63, S38-S42.	5.2	40
48	Urinary excretion of viable podocytes in health and renal disease. American Journal of Physiology - Renal Physiology, 2003, 285, F40-F48.	2.7	296
49	Podocytopenia and disease severity in IgA nephropathy. Kidney International, 2002, 61, 1475-1485.	5.2	257
50	Evolution of incipient nephropathy in type 2 diabetes mellitus. Kidney International, 2000, 58, 1228-1237.	5.2	89
51	Glomerular Permselectivity at the Onset of Nephropathy in Type 2 Diabetes Mellitus. Journal of the American Society of Nephrology: JASN, 2000, 11, 2095-2105.	6.1	84
52	The role of the podocyte in glomerulosclerosis. Current Opinion in Nephrology and Hypertension, 1999, 8, 489-497.	2.0	137
53	Progression of glomerular diseases: Is the podocyte the culprit?. Kidney International, 1998, 54, 687-697.	5.2	525
54	A Frequent Pathway to Glomerulosclerosis: Deterioration of Tuft Architecture – Podocyte Damage – Segmental Sclerosis. Kidney and Blood Pressure Research, 1996, 19, 245-253.	2.0	68

#	Article	IF	CITATIONS
55	An Introduction to Stereology with Applications to the Glomerulus. Glomerular Diseases, 0, , .	1.0	0