Luigi Cerulo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1601292/publications.pdf

Version: 2024-02-01

		394421	501196	
55	1,804	19	28	
papers	citations	h-index	g-index	
57	57	57	2302	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Loss of circadian rhythmicity in bdnf knockout zebrafish larvae. IScience, 2022, 25, 104054.	4.1	11
2	massiveGST: A Mann–Whitney–Wilcoxon Gene-Set Test Tool That Gives Meaning to Gene-Set Enrichment Analysis. Entropy, 2022, 24, 739.	2.2	0
3	Adaptive one-class Gaussian processes allow accurate prioritization of oncology drug targets. Bioinformatics, 2021, 37, 1420-1427.	4.1	2
4	A review of COVID-19 biomarkers and drug targets: resources and tools. Briefings in Bioinformatics, 2021, 22, 701-713.	6.5	20
5	Wnt (canonical and non canonical) pathways in breast carcinoma with extensive vascular invasion and inflammatory breast carcinoma. Pathology Research and Practice, 2021, 219, 153347.	2.3	2
6	A map of tumor–host interactions in glioma at single-cell resolution. GigaScience, 2020, 9, .	6.4	32
7	Deep learning predicts short non-coding RNA functions from only raw sequence data. PLoS Computational Biology, 2020, 16, e1008415.	3. 2	16
8	Deep learning predicts short non-coding RNA functions from only raw sequence data., 2020, 16, e1008415.		0
9	Deep learning predicts short non-coding RNA functions from only raw sequence data. , 2020, 16, e1008415.		O
10	Deep learning predicts short non-coding RNA functions from only raw sequence data., 2020, 16, e1008415.		0
11	Deep learning predicts short non-coding RNA functions from only raw sequence data. , 2020, 16, e1008415.		O
12	Circulating microRNAs expression profile in newly diagnosed and imatinib treated chronic phase – chronic myeloid leukemia. Leukemia and Lymphoma, 2019, 60, 805-811.	1.3	4
13	RGBM: regularized gradient boosting machines for identification of the transcriptional regulators of discrete glioma subtypes. Nucleic Acids Research, 2018, 46, e39-e39.	14.5	32
14	A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature, 2018, 553, 222-227.	27.8	137
15	Detection of long non–coding RNA homology, a comparative study on alignment and alignment–free metrics. BMC Bioinformatics, 2018, 19, 407.	2.6	31
16	Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis. Oncolmmunology, 2017, 6, e1253654.	4.6	146
17	Detection of statistically significant network changes in complex biological networks. BMC Systems Biology, 2017, 11, 32.	3.0	29
18	Identification of long non-coding transcripts with feature selection: a comparative study. BMC Bioinformatics, 2017, 18, 187.	2.6	21

#	Article	IF	Citations
19	Emerging Insight into MAPK Inhibitors and Immunotherapy in Colorectal Cancer. Current Medicinal Chemistry, 2017, 24, 1383-1402.	2.4	23
20	Systems biology analysis reveals NFAT5 as a novel biomarker and master regulator of inflammatory breast cancer. Journal of Translational Medicine, 2015, 13, 138.	4.4	38
21	Irish: A Hidden Markov Model to detect coded information islands in free text. Science of Computer Programming, 2015, 105, 26-43.	1.9	4
22	How changes affect software entropy: an empirical study. Empirical Software Engineering, 2014, 19, 1-38.	3.9	50
23	De novo reconstruction of gene regulatory networks from time series data, an approach based on formal methods. Methods, 2014, 69, 298-305.	3.8	44
24	Identification of a Novel Gene Signature of ES Cells Self-Renewal Fluctuation through System-Wide Analysis. PLoS ONE, 2014, 9, e83235.	2.5	23
25	A negative selection heuristic to predict new transcriptional targets. BMC Bioinformatics, 2013, 14, S3.	2.6	6
26	Infer gene regulatory networks from time series data with formal methods. , 2013, , .		3
27	Ensemble of Gene Signatures Identifies Novel Biomarkers in Colorectal Cancer Activated through PPAR \hat{I}^3 and TNF $\hat{I}\pm$ Signaling. PLoS ONE, 2013, 8, e72638.	2.5	33
28	How Long Does a Bug Survive? An Empirical Study. , 2011, , .		27
29	Social interactions around cross-system bug fixings. , 2011, , .		31
30	Achievements and challenges in software reverse engineering. Communications of the ACM, 2011, 54, 142-151.	4.5	98
31	Labeling Negative Examples in Supervised Learning of New Gene Regulatory Connections. Lecture Notes in Computer Science, 2011, , 159-173.	1.3	0
32	An empirical study on the maintenance of source code clones. Empirical Software Engineering, 2010, 15, 1-34.	3.9	144
33	Learning gene regulatory networks from only positive and unlabeled data. BMC Bioinformatics, 2010, 11, 228.	2.6	90
34	An eclectic approach for change impact analysis. , 2010, , .		29
35	VEGA: variational segmentation for copy number detection. Bioinformatics, 2010, 26, 3020-3027.	4.1	20
36	An Exploratory Study of Factors Influencing Change Entropy. , 2010, , .		13

#	Article	lF	Citations
37	Using multivariate time series and association rules to detect logical change coupling: An empirical study. , $2010, , .$		41
38	Ldiff: An enhanced line differencing tool. , 2009, , .		38
39	The life and death of statically detected vulnerabilities: An empirical study. Information and Software Technology, 2009, 51, 1469-1484.	4.4	31
40	Tracking Your Changes: A Language-Independent Approach. IEEE Software, 2009, 26, 50-57.	1.8	38
41	Selection of negative examples in learning gene regulatory networks. , 2009, , .		8
42	Mining candidate web services from legacy code. , 2008, , .		16
43	An empirical study of the relationships between design pattern roles and class change proneness. , 2008, , .		33
44	The Evolution and Decay of Statically Detected Source Code Vulnerabilities. , 2008, , .		7
45	How Clones are Maintained: An Empirical Study. , 2007, , .		141
46	An empirical study on the evolution of design patterns. , 2007, , .		61
47	Learning from bug-introducing changes to prevent fault prone code. , 2007, , .		35
48	Identifying Changed Source Code Lines from Version Repositories. , 2007, , .		68
49	Relating the Evolution of Design Patterns and Crosscutting Concerns. , 2007, , .		6
50	On the Use of Process Trails to Understand Software Development. , 2006, , .		6
51	Fine grained indexing of software repositories to support impact analysis. , 2006, , .		57
52	Where is bug resolution knowledge stored?. , 2006, , .		2
53	On the Use of Line Co-change for Identifying Crosscutting Concern Code. , 2006, , .		31
54	A Taxonomy of Information Retrieval Models and Tools. Journal of Computing and Information Technology, 2004, 12, 175.	0.3	20

ARTICLE IF CITATIONS

55 A visual approach to define XML to FO transformations., 2002,,... 4