
Filip J R Meysman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/160077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
2	Polyphosphate Dynamics in Cable Bacteria. Frontiers in Microbiology, 2022, 13, .	3.5	2
3	Combining citizen science and deep learning for large-scale estimation of outdoor nitrogen dioxide concentrations. Environmental Research, 2021, 196, 110389.	7.5	6
4	Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria. Frontiers in Microbiology, 2021, 12, 620807.	3.5	8
5	Bioturbation has a limited effect on phosphorus burial in salt marsh sediments. Biogeosciences, 2021, 18, 1451-1461.	3.3	5
6	Enhanced Laterally Resolved ToF-SIMS and AFM Imaging of the Electrically Conductive Structures in Cable Bacteria. Analytical Chemistry, 2021, 93, 7226-7234.	6.5	6
7	Efficient long-range conduction in cable bacteria through nickel protein wires. Nature Communications, 2021, 12, 3996.	12.8	32
8	Elevated sedimentary removal of Fe, Mn, and trace elements following a transient oxygenation event in the Eastern Gotland Basin, central Baltic Sea. Geochimica Et Cosmochimica Acta, 2020, 271, 16-32.	3.9	23
9	Quantification of Cable Bacteria in Marine Sediments via qPCR. Frontiers in Microbiology, 2020, 11, 1506.	3.5	14
10	Using Large-Scale NO ₂ Data from Citizen Science for Air-Quality Compliance and Policy Support. Environmental Science & Technology, 2020, 54, 11070-11078.	10.0	19
11	Intrinsic electrical properties of cable bacteria reveal an Arrhenius temperature dependence. Scientific Reports, 2020, 10, 19798.	3.3	17
12	An Ordered and Fail‣afe Electrical Network in Cable Bacteria. Advanced Biology, 2020, 4, e2000006.	3.0	26
13	Burrowing fauna mediate alternative stable states in the redox cycling of salt marsh sediments. Geochimica Et Cosmochimica Acta, 2020, 276, 31-49.	3.9	24
14	Foraminiferal community response to seasonal anoxia in Lake Grevelingen (the Netherlands). Biogeosciences, 2020, 17, 1415-1435.	3.3	20
15	A Crossâ€5ystem Comparison of Dark Carbon Fixation in Coastal Sediments. Global Biogeochemical Cycles, 2020, 34, e2019GB006298.	4.9	18
16	Pore water conditions driving calcium carbonate dissolution in reef sands. Geochimica Et Cosmochimica Acta, 2020, 279, 16-28.	3.9	11
17	Division of labor and growth during electrical cooperation in multicellular cable bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5478-5485.	7.1	54
18	Bistability in the redox chemistry of sediments and oceans. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33043-33050.	7.1	18

#	Article	IF	CITATIONS
19	The impact of scrubber discharge on the water quality in estuaries and ports. Environmental Sciences Europe, 2020, 32, .	5.5	48
20	Biogeochemical impact of cable bacteria on coastal Black Sea sediment. Biogeosciences, 2020, 17, 5919-5938.	3.3	15
21	On the evolution and physiology of cable bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19116-19125.	7.1	127
22	A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nature Communications, 2019, 10, 4120.	12.8	91
23	Modification of wheat bran particle size and tissue composition affects colonisation and metabolism by human faecal microbiota. Food and Function, 2019, 10, 379-396.	4.6	22
24	Abundance and Biogeochemical Impact of Cable Bacteria in Baltic Sea Sediments. Environmental Science & Technology, 2019, 53, 7494-7503.	10.0	43
25	Carbon, iron and sulphur cycling in the sediments of a Mediterranean lagoon (Char El Melh, Tunisia). Estuarine, Coastal and Shelf Science, 2019, 221, 156-169.	2.1	10
26	Mineral formation induced by cable bacteria performing long-distance electron transport in marine sediments. Biogeosciences, 2019, 16, 811-829.	3.3	16
27	Mn/Ca ratios of Ammonia tepida as a proxy for seasonal coastal hypoxia. Chemical Geology, 2019, 518, 55-66.	3.3	7
28	Cable bacteria promote DNRA through iron sulfide dissolution. Limnology and Oceanography, 2019, 64, 1228-1238.	3.1	38
29	Reduced TCA cycle rates at high hydrostatic pressure hinder hydrocarbon degradation and obligate oil degraders in natural, deep-sea microbial communities. ISME Journal, 2019, 13, 1004-1018.	9.8	14
30	Development of a hostâ€microbiome model of the small intestine. FASEB Journal, 2019, 33, 3985-3996.	0.5	28
31	Isolation of wheat bran-colonizing and metabolizing species from the human fecal microbiota. PeerJ, 2019, 7, e6293.	2.0	9
32	Phosphorus Cycling and Burial in Sediments of a Seasonally Hypoxic Marine Basin. Estuaries and Coasts, 2018, 41, 921-939.	2.2	13
33	Anthropogenic disturbance keeps the coastal seafloor biogeochemistry in a transient state. Scientific Reports, 2018, 8, 5582.	3.3	43
34	Biological rejuvenation of iron oxides in bioturbated marine sediments. ISME Journal, 2018, 12, 1389-1394.	9.8	38
35	Cable Bacteria Take a New Breath Using Long-Distance Electricity. Trends in Microbiology, 2018, 26, 411-422.	7.7	73
36	The Cell Envelope Structure of Cable Bacteria. Frontiers in Microbiology, 2018, 9, 3044.	3.5	53

#	Article	IF	CITATIONS
37	Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing. Nature Communications, 2018, 9, 2554.	12.8	56
38	Mnâ^•Ca intra- and inter-test variability in the benthic foraminifer <i>Ammonia tepida</i> . Biogeosciences, 2018, 15, 331-348.	3.3	33
39	Transient bottom water oxygenation creates a niche for cable bacteria in longâ€ŧerm anoxic sediments of the Eastern Gotland Basin. Environmental Microbiology, 2018, 20, 3031-3041.	3.8	37
40	The effect of oxygen availability on longâ€distance electron transport in marine sediments. Limnology and Oceanography, 2018, 63, 1799-1816.	3.1	22
41	Long-distance electron transport in individual, living cable bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5786-5791.	7.1	104
42	Bacterial chemoautotrophic reoxidation in sub-Arctic sediments: a seasonal study in Kobbefjord, Greenland. Marine Ecology - Progress Series, 2018, 601, 33-39.	1.9	3
43	Impact of electrogenic sulfur oxidation on trace metal cycling in a coastal sediment. Chemical Geology, 2017, 452, 9-23.	3.3	32
44	Olivine Dissolution in Seawater: Implications for CO ₂ Sequestration through Enhanced Weathering in Coastal Environments. Environmental Science & Technology, 2017, 51, 3960-3972.	10.0	139
45	Negative CO ₂ emissions via enhanced silicate weathering in coastal environments. Biology Letters, 2017, 13, 20160905.	2.3	74
46	Impact of Seasonal Hypoxia on Activity and Community Structure of Chemolithoautotrophic Bacteria in a Coastal Sediment. Applied and Environmental Microbiology, 2017, 83, .	3.1	28
47	Molybdenum dynamics in sediments of a seasonally-hypoxic coastal marine basin. Chemical Geology, 2017, 466, 627-640.	3.3	33
48	Marineâ€ŧerminating glaciers sustain high productivity in Greenland fjords. Global Change Biology, 2017, 23, 5344-5357.	9.5	192
49	Sedimentary oxygen dynamics in a seasonally hypoxic basin. Limnology and Oceanography, 2017, 62, 452-473.	3.1	20
50	Electrogenic Sulfur Oxidation by Cable Bacteria in Bivalve Reef Sediments. Frontiers in Marine Science, 2017, 4, .	2.5	44
51	Long-distance electron transport occurs globally in marine sediments. Biogeosciences, 2017, 14, 683-701.	3.3	84
52	Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen. Frontiers in Microbiology, 2016, 7, 1661.	3.5	30
53	Integrating sediment biogeochemistry into 3D oceanic models: A study of benthic-pelagic coupling in the Black Sea. Ocean Modelling, 2016, 101, 83-100.	2.4	47
54	Improved methodology for measuring pore patterns in the benthic foraminiferal genus Ammonia. Marine Micropaleontology, 2016, 128, 1-13.	1.2	38

#	Article	IF	CITATIONS
55	The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments: A field study. Geochimica Et Cosmochimica Acta, 2016, 194, 211-232.	3.9	54
56	Impact of cable bacteria on sedimentary iron and manganese dynamics in a seasonally-hypoxic marine basin. Geochimica Et Cosmochimica Acta, 2016, 192, 49-69.	3.9	70
57	The Influence of Bioturbation on Iron and Sulphur Cycling in Marine Sediments: A Model Analysis. Aquatic Geochemistry, 2016, 22, 469-504.	1.3	76
58	Spring bloom dynamics in a subarctic fjord influenced by tidewater outlet glaciers (Godthåbsfjord,) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
59	The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment. Geochimica Et Cosmochimica Acta, 2016, 172, 265-286.	3.9	73
60	Digital holographic microscopy: a novel tool to study the morphology, physiology and ecology of diatoms. Diatom Research, 2016, 31, 1-16.	1.2	18
61	Cable Bacteria Control Iron–Phosphorus Dynamics in Sediments of a Coastal Hypoxic Basin. Environmental Science & Technology, 2016, 50, 1227-1233.	10.0	112
62	Direct Visualization of Mucus Production by the Cold-Water Coral Lophelia pertusa with Digital Holographic Microscopy. PLoS ONE, 2016, 11, e0146766.	2.5	29
63	Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments. PLoS ONE, 2016, 11, e0161609.	2.5	67
64	Gas hydrate dissociation prolongs acidification of the Anthropocene oceans. Geophysical Research Letters, 2015, 42, 9337.	4.0	32
65	Estimating primary production from oxygen time series: A novel approach in the frequency domain. Limnology and Oceanography: Methods, 2015, 13, 529-552.	2.0	13
66	Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Frontiers in Marine Science, 2015, 2, .	2.5	142
67	Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13278-13283.	7.1	130
68	The geochemical fingerprint of microbial long-distance electron transport in the seafloor. Geochimica Et Cosmochimica Acta, 2015, 152, 122-142.	3.9	94
69	Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments. ISME Journal, 2015, 9, 1966-1978.	9.8	104
70	An Assessment of the Precision and Confidence of Aquatic Eddy Correlation Measurements. Journal of Atmospheric and Oceanic Technology, 2015, 32, 642-655.	1.3	35
71	Variable Importance of Macrofaunal Functional Biodiversity for Biogeochemical Cycling in Temperate Coastal Sediments. Ecosystems, 2014, 17, 720.	3.4	78
72	Oxygen burrowed away. Nature Geoscience, 2014, 7, 620-621.	12.9	5

#	Article	IF	CITATIONS
73	Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. ISME Journal, 2014, 8, 1843-1854.	9.8	126
74	Alkalinity production in intertidal sands intensified by lugworm bioirrigation. Estuarine, Coastal and Shelf Science, 2014, 148, 36-47.	2.1	43
75	Dissolved inorganic and organic nitrogen uptake in the coastal North Sea: A seasonal study. Estuarine, Coastal and Shelf Science, 2014, 147, 78-86.	2.1	13
76	Sediment and carbon fluxes along a longitudinal gradient in the lower Tana River (Kenya). Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1340-1353.	3.0	31
77	Imagingâ€inâ€Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms. Limnology and Oceanography: Methods, 2014, 12, 757-775.	2.0	25
78	Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 2013, 6, 597-607.	12.9	937
79	Experimental assessment of particle mixing fingerprints in the deposit-feeding bivalve <i>Abra alba</i> (Wood). Journal of Marine Research, 2012, 70, 689-718.	0.3	10
80	Quantification of sedimentâ€water interactions in a polluted tropical river through biogeochemical modeling. Global Biogeochemical Cycles, 2012, 26, .	4.9	25
81	The influence of pore-water advection, benthic photosynthesis, and respiration on calcium carbonate dynamics in reef sands. Limnology and Oceanography, 2012, 57, 809-825.	3.1	46
82	Dead or alive? Viability assessment of micro- and mesoplankton. Journal of Plankton Research, 2012, 34, 493-509.	1.8	93
83	Reactive transport in aquatic ecosystems: Rapid model prototyping in the open source software R. Environmental Modelling and Software, 2012, 32, 49-60.	4.5	106
84	When and why does bioturbation lead to diffusive mixing?. Journal of Marine Research, 2010, 68, 881-920.	0.3	36
85	Quantifying Food Web Flows Using Linear Inverse Models. Ecosystems, 2010, 13, 32-45.	3.4	113
86	AquaEnv : An Aqua tic Acid–Base Modelling Env ironment in R. Aquatic Geochemistry, 2010, 16, 507-546.	1.3	77
87	Different proxies for the reactivity of aquatic sediments towards oxygen: A model assessment. Ecological Modelling, 2010, 221, 2054-2067.	2.5	2
88	Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1405-1416.	4.0	63
89	Solving Differential Equations in R. AIP Conference Proceedings, 2010, , .	0.4	18
90	Ongoing transients in carbonate compensation. Global Biogeochemical Cycles, 2010, 24, .	4.9	32

#	Article	IF	CITATIONS
91	Carbonate compensation dynamics. Geophysical Research Letters, 2010, 37, .	4.0	50
92	Bioturbation, short-lived radioisotopes, and the tracer-dependence of biodiffusion coefficients. Geochimica Et Cosmochimica Acta, 2010, 74, 6049-6063.	3.9	31
93	Distribution, origin and cycling of carbon in the Tana River (Kenya): a dry season basin-scale survey from headwaters to the delta. Biogeosciences, 2009, 6, 2475-2493.	3.3	80
94	A generalized stochastic approach to particle dispersal in soils and sediments. Geochimica Et Cosmochimica Acta, 2008, 72, 3460-3478.	3.9	35
95	Modeling effects of patchiness and biological variability on transport rates within bioturbated sediments. Journal of Marine Research, 2008, 66, 191-218.	0.3	2
96	Quantification of sediment reworking rates in bioturbation research: a review. Aquatic Biology, 2008, 2, 219-238.	1.4	103
97	Influence of advective bio-irrigation on carbon and nitrogen cycling in sandy sediments. Journal of Marine Research, 2008, 66, 691-722.	0.3	39
98	OCEAN SCIENCE: Burial at Sea. Science, 2007, 316, 1294-1295.	12.6	65
99	Cadmium transport in sediments by tubificid bioturbation: An assessment of model complexity. Geochimica Et Cosmochimica Acta, 2007, 71, 844-862.	3.9	26
100	The influence of porosity gradients on mixing coefficients in sediments. Geochimica Et Cosmochimica Acta, 2007, 71, 961-973.	3.9	10
101	A thermodynamic perspective on food webs: Quantifying entropy production within detrital-based ecosystems. Journal of Theoretical Biology, 2007, 249, 124-139.	1.7	41
102	The effect of biogeochemical processes on pH. Marine Chemistry, 2007, 105, 30-51.	2.3	199
103	Reprint of "The effect of biogeochemical processes on pH― Marine Chemistry, 2007, 106, 380-401.	2.3	68
104	Steady-state tracer dynamics in a lattice-automaton model of bioturbation. Geochimica Et Cosmochimica Acta, 2006, 70, 5855-5867.	3.9	35
105	Bioturbation: a fresh look at Darwin's last idea. Trends in Ecology and Evolution, 2006, 21, 688-695.	8.7	666
106	Bioirrigation in permeable sediments: Advective pore-water transport induced by burrow ventilation. Limnology and Oceanography, 2006, 51, 142-156.	3.1	117
107	Quantification of denitrification in permeable sediments: Insights from a twoâ€dimensional simulation analysis and experimental data. Limnology and Oceanography: Methods, 2006, 4, 294-307.	2.0	77
108	Bio-irrigation in permeable sediments: An assessment of model complexity. Journal of Marine Research, 2006, 64, 589-627.	0.3	46

#	Article	IF	CITATIONS
109	The influence of Cu contamination on Nereis diversicolor bioturbation. Marine Chemistry, 2006, 102, 148-158.	2.3	29
110	Predicted tortuosity of muds. Geology, 2006, 34, 693.	4.4	50
111	Acid-volatile sulfide (AVS) — A comment. Marine Chemistry, 2005, 97, 206-212.	2.3	33
112	Modelling biological interactions in aquatic sediments as coupled reactive transport. Coastal and Estuarine Studies, 2005, , 359-388.	0.4	11
113	Modeling reactive transport in sediments subject to bioturbation and compaction. Geochimica Et Cosmochimica Acta, 2005, 69, 3601-3617.	3.9	77
114	Multicomponent ionic diffusion in porewaters: Coulombic effects revisited. Earth and Planetary Science Letters, 2004, 222, 653-666.	4.4	60
115	Research challenges at the land–sea interface. Estuarine, Coastal and Shelf Science, 2003, 58, 699-702.	2.1	27
116	Reactive transport in surface sediments. I. Model complexity and software quality. Computers and Geosciences, 2003, 29, 291-300.	4.2	33
117	Reactive transport in surface sediments. II. Media: an object-oriented problem-solving environment for early diagenesis. Computers and Geosciences, 2003, 29, 301-318.	4.2	67
118	Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans. Nature, 2003, 425, 504-507.	27.8	157
119	Relations between local, nonlocal, discrete and continuous models of bioturbation. Journal of Marine Research, 2003, 61, 391-410.	0.3	139
120	Diffusion in a lattice-automaton model of bioturbation by small deposit feeders. Journal of Marine Research, 2001, 59, 749-768.	0.3	33
121	Cable Bacteria Activity Modulates Arsenic Release From Sediments in a Seasonally Hypoxic Marine Basin. Frontiers in Microbiology, 0, 13, .	3.5	6