Jirong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1599771/publications.pdf

Version: 2024-02-01

		172457	161849
54	9,321	29	54
papers	citations	h-index	g-index
54	54	54	4652
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L1.	8.3	2,264
2	First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophysical Journal Letters, 2019, 875, L6.	8.3	897
3	First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophysical Journal Letters, 2019, 875, L5.	8.3	814
4	First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L4.	8.3	806
5	First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophysical Journal Letters, 2019, 875, L2.	8.3	618
6	First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophysical Journal Letters, 2022, 930, L12.	8.3	568
7	First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophysical Journal Letters, 2019, 875, L3.	8.3	519
8	First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophysical Journal Letters, 2021, 910, L13.	8.3	297
9	Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 \hat{I}^3 -ray Galactic sources. Nature, 2021, 594, 33-36.	27.8	262
10	First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophysical Journal Letters, 2021, 910, L12.	8.3	215
11	First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophysical Journal Letters, 2022, 930, L17.	8.3	215
12	First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophysical Journal Letters, 2022, 930, L16.	8.3	187
13	The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophysical Journal, Supplement Series, 2019, 243, 26.	7.7	175
14	First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophysical Journal Letters, 2022, 930, L14.	8.3	163
15	First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophysical Journal Letters, 2022, 930, L13.	8.3	142
16	First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophysical Journal Letters, 2022, 930, L15.	8.3	137
17	The Rapid Reddening and Featureless Optical Spectra of the Optical Counterpart of GW170817, AT 2017gfo, during the First Four Days. Astrophysical Journal Letters, 2017, 848, L32.	8.3	129
18	Peta–electron volt gamma-ray emission from the Crab Nebula. Science, 2021, 373, 425-430.	12.6	86

#	Article	IF	Citations
19	Observation of the Crab Nebula with LHAASO-KM2A â° a performance study *. Chinese Physics C, 2021, 45, 025002.	3.7	67
20	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.	8.3	67
21	Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nature Astronomy, 2021, 5, 1017-1028.	10.1	65
22	Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2021, 911, L11.	8.3	56
23	Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astronomy and Astrophysics, 2020, 640, A69.	5.1	54
24	Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical Journal, 2020, 901, 67.	4.5	51
25	THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophysical Journal, 2020, 897, 139.	4.5	47
26	Verification of Radiative Transfer Schemes for the EHT. Astrophysical Journal, 2020, 897, 148.	4.5	44
27	The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophysical Journal, 2021, 912, 35.	4.5	43
28	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19.	8.3	43
29	A Tale of Two Transients: GW 170104 and GRBÂ170105A. Astrophysical Journal, 2017, 845, 152.	4.5	29
30	Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18.	8.3	21
31	Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI. Astrophysical Journal Letters, 2022, 930, L21.	8.3	20
32	A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. Astrophysical Journal Letters, 2022, 930, L20.	8.3	20
33	Determining the Core Radio Luminosity Function of Radio AGNs via Copula. Astrophysical Journal, Supplement Series, 2018, 239, 33.	7.7	18
34	Multicolor Optical Monitoring of the Blazar S5 0716+714 from 2017 to 2019. Astrophysical Journal, Supplement Series, 2020, 247, 49.	7.7	18
35	SYMBA: An end-to-end VLBI synthetic data generation pipeline. Astronomy and Astrophysics, 2020, 636, A5.	5.1	18
36	Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation. Astrophysical Journal, 2017, 838, 78.	4.5	16

#	Article	IF	Citations
37	MATTER MIXING IN CORE-COLLAPSE SUPERNOVA EJECTA: LARGE DENSITY PERTURBATIONS IN THE PROGENITOR STAR?. Astrophysical Journal, 2015, 808, 164.	4.5	15
38	A Mixture Evolution Scenario of the AGN Radio Luminosity Function. II. Do Low- and High-power Radio-loud AGNs Evolve Differently?. Astrophysical Journal, 2017, 846, 78.	4.5	13
39	A MIXTURE EVOLUTION SCENARIO OF THE AGN RADIO LUMINOSITY FUNCTION. Astrophysical Journal, 2016, 820, 65.	4.5	12
40	Can Turbulence Dominate Depolarization of Optical Blazars?. Astrophysical Journal, 2017, 843, 23.	4.5	11
41	Optical Observations of the Young Type Ic Supernova SN 2014L in M99. Astrophysical Journal, 2018, 863, 109.	4.5	11
42	Statistical Study of the Swift X-Ray Flash and X-Ray Rich Gamma-Ray Bursts. Astrophysical Journal, 2018, 866, 97.	4.5	10
43	ON THE EVOLUTION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2016, 828, 96.	4.5	9
44	Central-engine-powered Bright X-Ray Flares in Short Gamma-Ray Bursts: A Hint of a Black Hole–Neutron Star Merger?. Astrophysical Journal, 2018, 858, 34.	4.5	7
45	Synchrotron Polarization Radiative Transfer: Relativistic Thermal Electron Contribution. Astrophysical Journal, 2018, 860, 153.	4.5	7
46	GRB X-Ray Flare Properties among Different GRB Subclasses. Astrophysical Journal, 2019, 884, 59.	4.5	7
47	Why Are Some Gamma-Ray Bursts Hosted by Oxygen-rich Galaxies?. Astrophysical Journal, 2018, 863, 95.	4.5	6
48	The Variability of the Black Hole Image in M87 at the Dynamical Timescale. Astrophysical Journal, 2022, 925, 13.	4.5	6
49	Synchrotron Polarization of Relativistic Thermal Electrons. Astrophysical Journal, 2018, 854, 51.	4.5	5
50	Temporal Analysis of GRB Precursors in the Third Swift-BAT Catalog. Astrophysical Journal, 2022, 928, 152.	4.5	4
51	On the Polarized Absorption Lines in Gamma-Ray Burst Optical Afterglows. Astrophysical Journal, 2021, 914, 134.	4.5	3
52	Spectral Diversities of Gamma-Ray Bursts in High-energy Bands: Hints from Turbulent Cascade. Astrophysical Journal, 2020, 898, 14.	4.5	2
53	Is Bremsstrahlung a Possible Mechanism to Explain the Thermal Feature in the GRB 130925A X-Ray Afterglow?. Astrophysical Journal, 2019, 878, 112.	4.5	1
54	Nondetection of the Gamma-Ray Burst X-Ray Emission Line: The Down-Comptonization Effect. Astrophysical Journal, 2020, 900, 10.	4.5	1