Bo Weng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1598861/publications.pdf

Version: 2024-02-01

233421 172457 3,669 48 29 45 h-index citations g-index papers 48 48 48 4825 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Planar heterojunction boosts solar-driven photocatalytic performance and stability of halide perovskite solar photocatalyst cell. Applied Catalysis B: Environmental, 2022, 301, 120760.	20.2	33
2	Photocatalytic Anaerobic Oxidation of Aromatic Alcohols Coupled With H2 Production Over CsPbBr3/GO-Pt Catalysts. Frontiers in Chemistry, 2022, 10, 833784.	3 . 6	8
3	Metal Halide Perovskite Based Heterojunction Photocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
4	Metal Halide Perovskite Based Heterojunction Photocatalysts. Angewandte Chemie, 2022, 134, .	2.0	11
5	Photothermal Suzuki Coupling Over a Metal Halide Perovskite/Pd Nanocube Composite Catalyst. ACS Applied Materials & Interfaces, 2022, 14, 17185-17194.	8.0	23
6	Edge engineering of platinum nanoparticles via porphyrin-based ultrathin 2D metal–organic frameworks for enhanced photocatalytic hydrogen generation. Chemical Engineering Journal, 2022, 442, 136144.	12.7	31
7	Solar Photocatalytic Oxidation of Methane to Methanol with Water over RuO _{<i>x</i>} /ZnO/CeO ₂ Nanorods. ACS Sustainable Chemistry and Engineering, 2022, 10, 16-22.	6.7	30
8	Recent Progress in Pd-Based Nanocatalysts for Selective Hydrogenation. ACS Omega, 2022, 7, 17-31.	3 . 5	46
9	Solar-to-Chemical Fuel Conversion via Metal Halide Perovskite Solar-Driven Electrocatalysis. Journal of Physical Chemistry Letters, 2022, 13, 25-41.	4.6	10
10	Siteâ€Sensitive Selective CO ₂ Photoreduction to CO over Gold Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, e202204563.	13.8	33
11	Siteâ€Sensitive Selective CO ₂ Photoreduction to CO over Gold Nanoparticles. Angewandte Chemie, 2022, 134, .	2.0	5
12	Rapid solute transfer photocatalytic membrane: The combination of host–guest interaction and photocatalyst load. Chemical Engineering Journal, 2022, 446, 137316.	12.7	12
13	Photocatalytic Anaerobic Dehydrogenation of Alcohols over Metal Halide Perovskites: A New Acid-Free Scheme for H ₂ Production. Journal of Physical Chemistry Letters, 2022, 13, 6559-6565.	4.6	10
14	Tuning the interfacial electronic structure <i>via</i> Au clusters for boosting photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2021, 9, 1759-1769.	10.3	33
15	Titanium Nitride-Supported Platinum with Metal–Support Interaction for Boosting Photocatalytic H ₂ Evolution of Indium Sulfide. ACS Applied Materials & Interfaces, 2021, 13, 7238-7247.	8.0	40
16	Visualizing light-induced dynamic structural transformations of Au clusters-based photocatalyst via in situ TEM. Nano Research, 2021, 14, 2805-2809.	10.4	24
17	Facet Engineering of Pd Nanocrystals for Enhancing Photocatalytic Hydrogenation: Modulation of the Schottky Barrier Height and Enrichment of Surface Reactants. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13044-13054.	8.0	53
18	Synergistic Redox Reaction for Value-Added Organic Transformation via Dual-Functional Photocatalytic Systems. ACS Catalysis, 2021, 11, 4613-4632.	11.2	69

#	Article	IF	CITATIONS
19	Ultrathin 2D/2D Ti ₃ C ₂ T _{<i>x</i>} /semiconductor dual-functional photocatalysts for simultaneous imine production and H ₂ evolution. Journal of Materials Chemistry A, 2021, 9, 19984-19993.	10.3	40
20	Oxygen vacancies mediated charge separation and collection in Pt/WO3 nanosheets for enhanced photocatalytic performance. Applied Surface Science, 2020, 507, 145133.	6.1	54
21	Zero-degree photochemical synthesis of highly dispersed Pt/TiO2 for enhanced photocatalytic hydrogen generation. Journal of Alloys and Compounds, 2020, 849, 156634.	5.5	16
22	A redox-active support for the synthesis of Au@SnO ₂ coreâ€"shell nanostructure and SnO ₂ quantum dots with efficient photoactivities. RSC Advances, 2020, 10, 33955-33961.	3.6	5
23	N ₂ Electroreduction to NH ₃ by Selenium Vacancyâ€Rich ReSe ₂ Catalysis at an Abrupt Interface. Angewandte Chemie - International Edition, 2020, 59, 13320-13327.	13.8	127
24	Piezopotential-driven simulated electrocatalytic nanosystem of ultrasmall MoC quantum dots encapsulated in ultrathin N-doped graphene vesicles for superhigh H2 production from pure water. Nano Energy, 2020, 75, 104990.	16.0	64
25	N ₂ Electroreduction to NH ₃ by Selenium Vacancyâ€Rich ReSe ₂ Catalysis at an Abrupt Interface. Angewandte Chemie, 2020, 132, 13422-13429.	2.0	18
26	Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle, Current Development, and Future Perspective. ACS Catalysis, 2019, 9, 4642-4687.	11,2	432
27	Improving the Photostability of Ultrasmall Au Clusters via a Combined Strategy of Surface Engineering and Interfacial Modification. Langmuir, 2019, 35, 5728-5736.	3.5	11
28	Revealing the Doubleâ€Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO ₂ Nanotube Arrays@RGO/MoS ₂ Heterostructure. Small, 2018, 14, e1704531.	10.0	49
29	Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nature Communications, 2018, 9, 1543.	12.8	223
30	Efficient infrared light promoted degradation of volatile organic compounds over photo-thermal responsive Pt-rGO-TiO2 composites. Applied Catalysis B: Environmental, 2018, 233, 260-271.	20.2	106
31	Efficient promotion of charge transfer and separation in hydrogenated TiO2/WO3 with rich surface-oxygen-vacancies for photodecomposition of gaseous toluene. Journal of Hazardous Materials, 2018, 342, 661-669.	12.4	99
32	Photocatalysis: Revealing the Double-Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO2 Nanotube Arrays@RGO/MoS2 Heterostructure (Small 21/2018). Small, 2018, 14, 1870096.	10.0	3
33	Multichannel Charge Transfer and Mechanistic Insight in Metal Decorated 2D–2D Bi ₂ WO ₆ –TiO ₂ Cascade with Enhanced Photocatalytic Performance. Small, 2017, 13, 1702253.	10.0	117
34	Decorating geometry- and size-controlled sub-20 nm Pd nanocubes onto 2D TiO $<$ sub $>$ 2 $<$ /sub $>$ nanosheets for simultaneous H $<$ sub $>$ 2 $<$ /sub $>$ evolution and 1,1-diethoxyethane production. Journal of Materials Chemistry A, 2016, 4, 18366-18377.	10.3	90
35	The Applications of Graphene-based Nanocomposites in the Field of Photocatalytic Selective Organic Transformations. World Scientific Series in Nanoscience and Nanotechnology, 2016, , 81-115.	0.1	0
36	Vertically aligned ZnO–Au@CdS core–shell nanorod arrays as an all-solid-state vectorial Z-scheme system for photocatalytic application. Journal of Materials Chemistry A, 2016, 4, 18804-18814.	10.3	122

#	Article	IF	CITATIONS
37	What if the Electrical Conductivity of Graphene Is Significantly Deteriorated for the Graphene–Semiconductor Composite-Based Photocatalysis?. ACS Applied Materials & Interfaces, 2015, 7, 27948-27958.	8.0	50
38	Two-Dimensional MoS ₂ Nanosheet-Coated Bi ₂ S ₃ Discoids: Synthesis, Formation Mechanism, and Photocatalytic Application. Langmuir, 2015, 31, 4314-4322.	3.5	178
39	Constructing one-dimensional silver nanowire-doped reduced graphene oxide integrated with CdS nanowire network hybrid structures toward artificial photosynthesis. Nanoscale, 2015, 7, 861-866.	5.6	81
40	In situ synthesis of hierarchical In ₂ S ₃ â€"graphene nanocomposite photocatalyst for selective oxidation. RSC Advances, 2014, 4, 64484-64493.	3.6	28
41	Synthesis of In ₂ S ₃ –CNT nanocomposites for selective reduction under visible light. Journal of Materials Chemistry A, 2014, 2, 1710-1720.	10.3	99
42	Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. Journal of Materials Chemistry A, 2014, 2, 9380.	10.3	204
43	One-dimensional nanostructure based materials for versatile photocatalytic applications. RSC Advances, 2014, 4, 12685.	3.6	205
44	Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Physical Chemistry Chemical Physics, 2014, 16, 16891.	2.8	374
45	Observing the Role of Graphene in Boosting the Two-Electron Reduction of Oxygen in Graphene–WO ₃ Nanorod Photocatalysts. Langmuir, 2014, 30, 5574-5584.	3.5	192
46	A simple yet efficient visible-light-driven CdS nanowires-carbon nanotube 1D–1D nanocomposite photocatalyst. Journal of Catalysis, 2014, 309, 146-155.	6.2	161
47	Optimized colloidal growth of hexagonal close-packed Ag microparticles and their stability under catalytic conditions. New Journal of Chemistry, 0, , .	2.8	1
48	Steric effects of a homogeneous CuCl ₂ /solvent system for photocatalytic selective oxidation of benzyl alcohol. New Journal of Chemistry, 0, , .	2.8	1