Cameron Alexander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1598838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigating histidinylated highly branched poly(lysine) for siRNA delivery. Journal of Materials Chemistry B, 2022, 10, 236-246.	5.8	4
2	Synthesis, characterisation and evaluation of hyperbranched <i>N</i> -(2-hydroxypropyl) methacrylamides for transport and delivery in pancreatic cell lines <i>in vitro</i> and <i>in vivo</i> . Biomaterials Science, 2022, 10, 2328-2344.	5.4	3
3	Therapeutic potential of miRNAs in <i>Clostridioides difficile</i> infection. Future Microbiology, 2022, 17, 315-318.	2.0	2
4	Passerini chemistries for synthesis of polymer pro-drug and polymersome drug delivery nanoparticles. Journal of Materials Chemistry B, 2022, 10, 3895-3905.	5.8	6
5	An <i>in vitro</i> investigation of the hepatic toxicity of PEGylated polymeric redox responsive nanoparticles. RSC Advances, 2022, 12, 12860-12870.	3.6	2
6	Oxygen-Tolerant RAFT Polymerization Initiated by Living Bacteria. ACS Macro Letters, 2022, 11, 954-960.	4.8	4
7	Thermosensitive "Smart―Surfaces for Biorecognition Based Cell Adhesion and Controlled Detachment. Macromolecular Bioscience, 2021, 21, e2000277.	4.1	5
8	Functionalized Block Coâ€Polymer Proâ€Drug Nanoparticles with Antiâ€Cancer Efficacy in 3D Spheroids and in an Orthotopic Triple Negative Breast Cancer Model. Advanced Therapeutics, 2021, 4, 2000103.	3.2	6
9	Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering. Biomaterials, 2021, 266, 120450.	11.4	27
10	Reductionâ€responsive polymers for drug delivery in cancer therapy—Is there anything new to discover?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1678.	6.1	39
11	Synthesis of Passeriniâ€3CR Polymers and Assembly into Cytocompatible Polymersomes. Macromolecular Rapid Communications, 2021, 42, e2000321.	3.9	8
12	Protamine-based nanoparticles: an attractive gene delivery system for 2D and 3D glioblastoma models. , 2021, , .		0
13	Polymer Pro-Drug Nanoparticles for Sustained Release of Cytotoxic Drugs Evaluated in Patient-Derived Glioblastoma Cell Lines and In Situ Gelling Formulations. Pharmaceutics, 2021, 13, 208.	4.5	13
14	Fluorophore Selection and Incorporation Contribute to Permeation and Distribution Behaviors of Hyperbranched Polymers in Multi-Cellular Tumor Spheroids and Xenograft Tumor Models. ACS Applied Bio Materials, 2021, 4, 2675-2685.	4.6	4
15	Potentiated inhibition of Trichoderma virens and other environmental fungi by new biocide combinations. Applied Microbiology and Biotechnology, 2021, 105, 2867-2875.	3.6	2
16	Combining Inducible Lectin Expression and Magnetic Glyconanoparticles for the Selective Isolation of Bacteria from Mixed Populations. ACS Applied Materials & Interfaces, 2021, 13, 19230-19243.	8.0	4
17	PEG-polyaminoacid based micelles for controlled release of doxorubicin: Rational design, safety and efficacy study. Journal of Controlled Release, 2021, 335, 21-37.	9.9	17
18	Challenges and solutions in polymer drug delivery for bacterial biofilm treatment: A tissue-by-tissue account. Advanced Drug Delivery Reviews, 2021, 178, 113973.	13.7	36

#	Article	IF	CITATIONS
19	Mixed polymer and bioconjugate core/shell electrospun fibres for biphasic protein release. Journal of Materials Chemistry B, 2021, 9, 4120-4133.	5.8	10
20	Multi-component bioresponsive nanoparticles for synchronous delivery of docetaxel and TUBB3 siRNA to lung cancer cells. Nanoscale, 2021, 13, 11414-11426.	5.6	32
21	Engineering bacteria to control electron transport altering the synthesis of non-native polymer. RSC Advances, 2021, 12, 451-457.	3.6	0
22	Polyphosphazenes for the delivery of biopharmaceuticals. Journal of Applied Polymer Science, 2020, 137, 48688.	2.6	16
23	Ironâ€Catalysed Radical Polymerisation by Living Bacteria. Angewandte Chemie, 2020, 132, 4780-4785.	2.0	13
24	Ironâ€Catalysed Radical Polymerisation by Living Bacteria. Angewandte Chemie - International Edition, 2020, 59, 4750-4755.	13.8	32
25	Enhancing doxorubicin anticancer activity with a novel polymeric platform photoreleasing nitric oxide. Biomaterials Science, 2020, 8, 1329-1344.	5.4	19
26	All Surfaces Are Not Equal in Contact Transmission of SARS-CoV-2. Matter, 2020, 3, 1433-1441.	10.0	49
27	Effects of Polymer 3D Architecture, Size, and Chemistry on Biological Transport and Drug Delivery In Vitro and in Orthotopic Triple Negative Breast Cancer Models. Advanced Healthcare Materials, 2020, 9, 2000892.	7.6	17
28	Biomedical engineering approaches to enhance therapeutic delivery for malignant glioma. Journal of Controlled Release, 2020, 328, 917-931.	9.9	25
29	Polymer microarrays rapidly identify competitive adsorbents of virus-like particles. Biointerphases, 2020, 15, 061005.	1.6	5
30	Synthesis and Antibacterial Evaluation of New Pyrazolo[3,4-d]pyrimidines Kinase Inhibitors. Molecules, 2020, 25, 5354.	3.8	10
31	Repurposing Nonantifungal Approved Drugs for Synergistic Targeting of Fungal Pathogens. ACS Infectious Diseases, 2020, 6, 2950-2958.	3.8	15
32	Controlling the Biological Fate of Micellar Nanoparticles: Balancing Stealth and Targeting. ACS Nano, 2020, 14, 13739-13753.	14.6	30
33	An improved synthesis of poly(amidoamine)s for complexation with self-amplifying RNA and effective transfection. Polymer Chemistry, 2020, 11, 5861-5869.	3.9	8
34	Ornithine-derived oligomers and dendrimers for <i>in vitro</i> delivery of DNA and <i>ex vivo</i> transfection of skin cells <i>via</i> saRNA. Journal of Materials Chemistry B, 2020, 8, 4940-4949.	5.8	15
35	Surface polymer imprinted optical fibre sensor for dose detection of dabrafenib. Analyst, The, 2020, 145, 4504-4511.	3.5	14
36	Prediction of the enhanced insulin absorption across a triple co-cultured intestinal model using mucus penetrating PLGA nanoparticles. International Journal of Pharmaceutics, 2020, 585, 119516.	5.2	17

#	Article	IF	CITATIONS
37	Nanoformulation-by-design: an experimental and molecular dynamics study for polymer coated drug nanoparticles. RSC Advances, 2020, 10, 19521-19533.	3.6	12
38	Facile Dye-Initiated Polymerization of Lactide–Glycolide Generates Highly Fluorescent Poly(lactic- <i>co</i> -glycolic Acid) for Enhanced Characterization of Cellular Delivery. ACS Macro Letters, 2020, 9, 431-437.	4.8	11
39	A Simple Polymicrobial Biofilm Keratinocyte Colonization Model for Exploring Interactions Between Commensals, Pathogens and Antimicrobials. Frontiers in Microbiology, 2020, 11, 291.	3.5	23
40	The electrospinning of a thermo-responsive polymer with peptide conjugates for phenotype support and extracellular matrix production of therapeutically relevant mammalian cells. Biomaterials Science, 2020, 8, 2611-2626.	5.4	6
41	The <i>In Vitro</i> , <i>Ex Vivo</i> , and <i>In Vivo</i> Effect of Polymer Hydrophobicity on Charge-Reversible Vectors for Self-Amplifying RNA. Biomacromolecules, 2020, 21, 3242-3253.	5.4	20
42	Development of a Neutral Diketopyrrolopyrrole Phosphine Oxide for the Selective Bioimaging of Mitochondria at the Nanomolar Level. Chemistry - A European Journal, 2020, 26, 3173-3180.	3.3	15
43	Four-wave-mixing microscopy reveals non-colocalisation between gold nanoparticles and fluorophore conjugates inside cells. Nanoscale, 2020, 12, 4622-4635.	5.6	10
44	Development of Pyrazolo[3,4- <i>d</i>]pyrimidine Kinase Inhibitors as Potential Clinical Candidates for Glioblastoma Multiforme. ACS Medicinal Chemistry Letters, 2020, 11, 657-663.	2.8	15
45	A â€~greener' one-pot synthesis of monoterpene-functionalised lactide oligomers. European Polymer Journal, 2020, 125, 109516.	5.4	13
46	Synthesis of micellar-like terpolymer nanoparticles with reductively-cleavable cross-links and evaluation of efficacy in 2D and 3D models of triple negative breast cancer. Journal of Controlled Release, 2020, 323, 549-564.	9.9	13
47	Detection of Dabrafenib using Optical Fibre Long Period Grating Sensor Modified with Surface Imprinted Polymers for Dose Detection and Prevention of Cancer Resistance. , 2020, , .		0
48	Biocompatible Unimolecular Micelles Obtained via the Passerini Reaction as Versatile Nanocarriers for Potential Medical Applications. Biomacromolecules, 2019, 20, 90-101.	5.4	21
49	Role of selfâ€assembly conditions and amphiphilic balance on nanoparticle formation of PEGâ€PDLLA copolymers in aqueous environments. Journal of Polymer Science Part A, 2019, 57, 1801-1810.	2.3	20
50	Amphiphilic tri- and tetra-block co-polymers combining versatile functionality with facile assembly into cytocompatible nanoparticles. Biomaterials Science, 2019, 7, 3832-3845.	5.4	18
51	Low molecular weight PEG–PLGA polymers provide a superior matrix for conjugated polymer nanoparticles in terms of physicochemical properties, biocompatibility and optical/photoacoustic performance. Journal of Materials Chemistry B, 2019, 7, 5115-5124.	5.8	33
52	Epoxy–amine oligomers from terpenes with applications in synergistic antifungal treatments. Journal of Materials Chemistry B, 2019, 7, 5222-5229.	5.8	16
53	Dual bioresponsive antibiotic and quorum sensing inhibitor combination nanoparticles for treatment of <i>Pseudomonas aeruginosa</i> biofilms <i>in vitro</i> and <i>ex vivo</i> . Biomaterials Science, 2019, 7, 4099-4111.	5.4	56
54	Versatile, Highly Controlled Synthesis of Hybrid (Meth)acrylate–Polyester–Carbonates and their Exploitation in Tandem Postâ€Polymerization–Functionalization. Macromolecular Chemistry and Physics, 2019, 220, 1900270.	2.2	8

#	Article	IF	CITATIONS
55	A thermoresponsive three-dimensional fibrous cell culture platform for enzyme-free expansion of mammalian cells. Acta Biomaterialia, 2019, 95, 427-438.	8.3	10
56	Polymer Microparticles with Defined Surface Chemistry and Topography Mediate the Formation of Stem Cell Aggregates and Cardiomyocyte Function. ACS Applied Materials & Interfaces, 2019, 11, 34560-34574.	8.0	25
57	Polyvalent Diazonium Polymers Provide Efficient Protection of Oncolytic Adenovirus Enadenotucirev from Neutralizing Antibodies while Maintaining Biological Activity <i>In Vitro</i> and <i>In Vivo</i> . Bioconjugate Chemistry, 2019, 30, 1244-1257.	3.6	17
58	Lactoferrin-Loaded Alginate Microparticles to Target Clostridioides difficile Infection. Journal of Pharmaceutical Sciences, 2019, 108, 2438-2446.	3.3	15
59	Investigating the intracellular effects of hyperbranched polycation–DNA complexes on lung cancer cells using LC-MS-based metabolite profiling. Molecular Omics, 2019, 15, 77-87.	2.8	9
60	LC-MS metabolomics comparisons of cancer cell and macrophage responses to methotrexate and polymer-encapsulated methotrexate. International Journal of Pharmaceutics: X, 2019, 1, 100036.	1.6	6
61	Mammalian ellâ€Driven Polymerisation of Pyrrole. ChemBioChem, 2019, 20, 1008-1013.	2.6	18
62	Synthesis of Methacrylateâ€Terminated Block Copolymers with Reduced Transesterification by Controlled Ringâ€Opening Polymerization. Macromolecular Chemistry and Physics, 2019, 220, 1800459.	2.2	16
63	Structureâ€Optimized Interpolymer Polyphosphazene Complexes for Effective Gene Delivery against Glioblastoma. Advanced Therapeutics, 2019, 2, 1800126.	3.2	11
64	Switching of Macromolecular Ligand Display by Thermoresponsive Polymers Mediates Endocytosis of Multiconjugate Nanoparticles. Bioconjugate Chemistry, 2018, 29, 1030-1046.	3.6	16
65	Water Solubility Enhancement of Pyrazolo[3,4- <i>d</i>]pyrimidine Derivatives via Miniaturized Polymer–Drug Microarrays. ACS Medicinal Chemistry Letters, 2018, 9, 193-197.	2.8	10
66	Identification of Novel "Inks―for 3D Printing Using High-Throughput Screening: Bioresorbable Photocurable Polymers for Controlled Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 6841-6848.	8.0	44
67	Alkyl-Modified Oligonucleotides as Intercalating Vehicles for Doxorubicin Uptake via Albumin Binding. Molecular Pharmaceutics, 2018, 15, 437-446.	4.6	10
68	Star-shaped poly(oligoethylene glycol) copolymer-based gels: Thermo-responsive behaviour and bioapplicability for risedronate intranasal delivery. International Journal of Pharmaceutics, 2018, 543, 224-233.	5.2	18
69	Enhanced uptake in 2D- and 3D- lung cancer cell models of redox responsive PEGylated nanoparticles with sensitivity to reducing extra- and intracellular environments. Journal of Controlled Release, 2018, 277, 126-141.	9.9	54
70	Structural variations in hyperbranched polymers prepared via thermal polycondensation of lysine and histidine and their effects on DNA delivery. Journal of Interdisciplinary Nanomedicine, 2018, 3, 38-54.	3.6	11
71	Rapid formulation of redox-responsive oligo-β-aminoester polyplexes with siRNA <i>via</i> jet printing. Journal of Materials Chemistry B, 2018, 6, 6550-6558.	5.8	6
72	PTU-046â€Novel lactoferrin-loaded alginate microgels display anti-clostridium difficile defence		0

properties in vitro., 2018,,.

#	Article	IF	CITATIONS
73	Photocrosslinkable Gelatin Hydrogels Modulate the Production of the Major Pro-inflammatory Cytokine, TNF-α, by Human Mononuclear Cells. Frontiers in Bioengineering and Biotechnology, 2018, 6, 116.	4.1	36
74	Time and cellâ€dependent effects of endocytosis inhibitors on the internalization of biomolecule markers and nanomaterials. Journal of Interdisciplinary Nanomedicine, 2018, 3, 67-81.	3.6	25
75	Highâ€Throughput Miniaturized Screening of Nanoparticle Formation via Inkjet Printing. Macromolecular Materials and Engineering, 2018, 303, 1800146.	3.6	8
76	Stimuliâ€Responsive Prodrug Chemistries for Drug Delivery. Advanced Therapeutics, 2018, 1, 1800030.	3.2	51
77	Post-Modified Polypeptides with UCST-Type Behavior for Control of Cell Attachment in Physiological Conditions. Materials, 2018, 11, 95.	2.9	9
78	In Silico Screening for Solid Dispersions: The Trouble with Solubility Parameters and χFH. Molecular Pharmaceutics, 2018, 15, 4654-4667.	4.6	35
79	Bioreducible cross-linked core polymer micelles enhance in vitro activity of methotrexate in breast cancer cells. Biomaterials Science, 2017, 5, 532-550.	5.4	41
80	Dually sensitive dextran-based micelles for methotrexate delivery. RSC Advances, 2017, 7, 14448-14460.	3.6	22
81	Rapid Nanogram Scale Screening Method of Microarrays to Evaluate Drug–Polymer Blends Using High-Throughput Printing Technology. Molecular Pharmaceutics, 2017, 14, 2079-2087.	4.6	12
82	Upper critical solution temperature thermo-responsive polymer brushes and a mechanism for controlled cell attachment. Journal of Materials Chemistry B, 2017, 5, 4926-4933.	5.8	48
83	Engineered Polymer–Transferrin Conjugates as Self-Assembling Targeted Drug Delivery Systems. Biomacromolecules, 2017, 18, 1532-1543.	5.4	23
84	Tumour regression and improved gastrointestinal tolerability from controlled release of SN-38 from novel polyoxazoline-modified dendrimers. Journal of Controlled Release, 2017, 247, 73-85.	9.9	32
85	Control of targeting ligand display by pH-responsive polymers on gold nanoparticles mediates selective entry into cancer cells. Nanoscale, 2017, 9, 11137-11147.	5.6	22
86	A design of experiments approach to identify the influencing parameters that determine poly-D,L-lactic acid (PDLLA) electrospun scaffold morphologies. Biomedical Materials (Bristol), 2017, 12, 055009.	3.3	27
87	Versatile Routes to Functional RAFT Chain Transfer Agents through the Passerini Multicomponent Reaction. ACS Macro Letters, 2017, 6, 781-785.	4.8	7
88	Control of aggregation temperatures in mixed and blended cytocompatible thermoresponsive block co-polymer nanoparticles. Soft Matter, 2017, 13, 7441-7452.	2.7	2
89	Polymers for binding of the gram-positive oral pathogen Streptococcus mutans. PLoS ONE, 2017, 12, e0180087.	2.5	15
90	Enhanced cytocompatibility and functional group content of poly(<scp>l</scp> -lysine) dendrimers by grafting with poly(oxazolines). Polymer Chemistry, 2016, 7, 4609-4617.	3.9	17

#	Article	IF	CITATIONS
91	Influence of Polymer Size on Uptake and Cytotoxicity of Doxorubicin-Loaded DNA–PEG Conjugates. Bioconjugate Chemistry, 2016, 27, 1244-1252.	3.6	10
92	Dendrimer mediated clustering of bacteria: improved aggregation and evaluation of bacterial response and viability. Biomaterials Science, 2016, 4, 998-1006.	5.4	17
93	Variation in structure and properties of poly(glycerol adipate) via control of chain branching during enzymatic synthesis. Polymer, 2016, 89, 41-49.	3.8	75
94	Amphiphilic block copolymers from a renewable Îμ-decalactone monomer: prediction and characterization of micellar core effects on drug encapsulation and release. Journal of Materials Chemistry B, 2016, 4, 7119-7129.	5.8	35
95	One-pot RAFT and fast polymersomes assembly: a â€~beeline' from monomers to drug-loaded nanovectors. Polymer Chemistry, 2016, 7, 6714-6724.	3.9	11
96	Synthesis, characterization and evaluation of in vitro toxicity in hepatocytes of linear polyesters with varied aromatic and aliphatic co-monomers. Journal of Controlled Release, 2016, 244, 214-228.	9.9	4
97	New N-acyl amino acid-functionalized biodegradable polyesters for pharmaceutical and biomedical applications. RSC Advances, 2016, 6, 109401-109405.	3.6	25
98	Properties of acyl modified poly(glycerol-adipate) comb-like polymers and their self-assembly into nanoparticles. Journal of Polymer Science Part A, 2016, 54, 3267-3278.	2.3	45
99	The effect of protein concentration on the viscosity of a recombinant albumin solution formulation. RSC Advances, 2016, 6, 15143-15154.	3.6	33
100	Thermoresponsive magnetic colloidal gels via surface-initiated polymerisation from functional microparticles. Journal of Materials Chemistry B, 2016, 4, 962-972.	5.8	5
101	Engineering serendipity: High-throughput discovery of materials that resist bacterial attachment. Acta Biomaterialia, 2016, 34, 84-92.	8.3	30
102	Synthesis of ¹⁹ F nucleic acid–polymer conjugates as real-time MRI probes of biorecognition. Polymer Chemistry, 2016, 7, 2180-2191.	3.9	10
103	Synthesis and In Vitro Evaluation of Polyethylene Glycol-Paclitaxel Conjugates for Lung Cancer Therapy. Pharmaceutical Research, 2016, 33, 1671-1681.	3.5	16
104	Imprinted Contact Lenses for Sustained Release of Polymyxin B and Related Antimicrobial Peptides. Journal of Pharmaceutical Sciences, 2015, 104, 3386-3394.	3.3	74
105	Triblock Copolymer Nanovesicles for pH-Responsive Targeted Delivery and Controlled Release of siRNA to Cancer Cells. Biomacromolecules, 2015, 16, 1924-1937.	5.4	53
106	Multiscale Modeling of Drug–Polymer Nanoparticle Assembly Identifies Parameters Influencing Drug Encapsulation Efficiency. Journal of Chemical Theory and Computation, 2015, 11, 2705-2713.	5.3	29
107	Complexity Measurement Based on Information Theory and Kolmogorov Complexity. Artificial Life, 2015, 21, 205-224.	1.3	13
108	In vitro co-culture model of medulloblastoma and human neural stem cells for drug delivery assessment. Journal of Biotechnology, 2015, 205, 3-13.	3.8	52

#	Article	IF	CITATIONS
109	Heparin molecularly imprinted surfaces for the attenuation of complement activation in blood. Biomaterials Science, 2015, 3, 1208-1217.	5.4	19
110	Cationic polymer mediated bacterial clustering: Cell-adhesive properties of homo- and copolymers. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 47-62.	4.3	23
111	Multifunctional Poly[<i>N</i> -(2-hydroxypropyl)methacrylamide] Copolymers via Postpolymerization Modification and Sequential Thiol–Ene Chemistry. Macromolecules, 2015, 48, 2857-2863.	4.8	17
112	Receptor Crosslinking: A General Method to Trigger Internalization and Lysosomal Targeting of Therapeutic Receptor:Ligand Complexes. Molecular Therapy, 2015, 23, 1888-1898.	8.2	83
113	New biomaterials from renewable resources – amphiphilic block copolymers from δ-decalactone. Polymer Chemistry, 2015, 6, 7196-7210.	3.9	45
114	Systemic in vivo delivery of siRNA to tumours using combination of polyethyleneimine and transferrin–polyethyleneimine conjugates. Biomaterials Science, 2015, 3, 1439-1448.	5.4	17
115	Evaluation of a Thermoresponsive Polycaprolactone Scaffold for In Vitro Three-Dimensional Stem Cell Differentiation. Tissue Engineering - Part A, 2015, 21, 310-319.	3.1	12
116	A Thermoresponsive and Magnetic Colloid for 3D Cell Expansion and Reconfiguration. Advanced Materials, 2015, 27, 662-668.	21.0	16
117	Multiplexing Spheroid Volume, Resazurin and Acid Phosphatase Viability Assays for High-Throughput Screening of Tumour Spheroids and Stem Cell Neurospheres. PLoS ONE, 2014, 9, e103817.	2.5	176
118	Synthesis and characterization of variable conformation pH responsive block co-polymers for nucleic acid delivery and targeted cell entry. Polymer Chemistry, 2014, 5, 1626-1636.	3.9	37
119	Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling. Nature Materials, 2014, 13, 748-755.	27.5	124
120	Multimodal Polymer Nanoparticles with Combined ¹⁹ F Magnetic Resonance and Optical Detection for Tunable, Targeted, Multimodal Imaging <i>in Vivo</i> . Journal of the American Chemical Society, 2014, 136, 2413-2419.	13.7	160
121	Camptothecin prodrug block copolymer micelles with high drug loading and target specificity. Polymer Chemistry, 2014, 5, 5320-5329.	3.9	33
122	Programmable polymer-DNA hydrogels with dual input and multiscale responses. Biomaterials Science, 2014, 2, 203-211.	5.4	27
123	Programmed assembly of polymer–DNA conjugate nanoparticles with optical readout and sequence-specific activation of biorecognition. Nanoscale, 2014, 6, 2368-2374.	5.6	15
124	Ultrasonic monitoring of drug loaded Pluronic F127 micellular hydrogel phase behaviour. Materials Science and Engineering C, 2014, 34, 280-286.	7.3	8
125	Chemistry and formulations for siRNA therapeutics. Chemical Society Reviews, 2013, 42, 7983.	38.1	77
126	Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes. Nature Chemistry, 2013, 5, 1058-1065.	13.6	67

8

#	Article	IF	CITATIONS
127	Novel pH-responsive nanovectors for controlled release of ionisable drugs. Journal of Materials Chemistry B, 2013, 1, 5335.	5.8	15
128	Enhanced uptake of nanoparticle drug carriers via a thermoresponsive shell enhances cytotoxicity in a cancer cell line. Biomaterials Science, 2013, 1, 434.	5.4	63
129	pH-responsive poly(4-hydroxybenzoyl methacrylates) – design and engineering of intelligent drug delivery nanovectors. Polymer Chemistry, 2013, 4, 4375.	3.9	13
130	Multi-modal switching in responsive DNA block co-polymer conjugates. Physical Chemistry Chemical Physics, 2013, 15, 16263.	2.8	7
131	Self-assembly of biopolymers – recent progress and future prospects. Faraday Discussions, 2013, 166, 449.	3.2	3
132	Epithelial Toxicity of Alkylglycoside Surfactants. Journal of Pharmaceutical Sciences, 2013, 102, 114-125.	3.3	16
133	Gelation of microsphere dispersions using a thermally-responsive graft polymer. Journal of Colloid and Interface Science, 2013, 396, 187-196.	9.4	7
134	Uptake and transport of B 12 -conjugated nanoparticles in airway epithelium. Journal of Controlled Release, 2013, 172, 374-381.	9.9	36
135	Nanoparticle Transport in Epithelial Cells: Pathway Switching Through Bioconjugation. Small, 2013, 9, 3282-3294.	10.0	50
136	Bioresponsive Polyplexes and Micelleplexes. RSC Smart Materials, 2013, , 256-282.	0.1	3
137	Hollow Colloidosomes Prepared Using Accelerated Solvent Evaporation. Langmuir, 2013, 29, 13676-13685.	3.5	8
138	Titelbild: Directed Assembly of Inorganic Polyoxometalate-based Micrometer-Scale Tubular Architectures by Using Optical Control (Angew. Chem. 51/2012). Angewandte Chemie, 2012, 124, 12799-12799.	2.0	0
139	Well-defined polymeric vesicles with high stability and modulation of cell uptake by a simple coating protocol. Polymer Chemistry, 2012, 3, 2596.	3.9	9
140	Directed Assembly of Inorganic Polyoxometalateâ€based Micrometerâ€Scale Tubular Architectures by Using Optical Control. Angewandte Chemie - International Edition, 2012, 51, 12754-12758.	13.8	27
141	Transfection of luciferase DNA into various cells by cationic cyclodextrin polyrotaxanes derived from ionene-11. Journal of Materials Chemistry, 2012, 22, 8558.	6.7	23
142	Multicomponent Synthetic Polymers with Viral-Mimetic Chemistry for Nucleic Acid Delivery. Molecular Pharmaceutics, 2012, 9, 1-13.	4.6	40
143	Evaluation of calcium depletion as a strategy for enhancement of mucosal absorption of macromolecules. Biochemical and Biophysical Research Communications, 2012, 418, 128-133.	2.1	6
144	Interactions of PEO–PPO–PEO block copolymers with lipid membranes: a computational and experimental study linking membrane lysis with polymer structure. Soft Matter, 2012, 8, 6744.	2.7	61

#	Article	IF	CITATIONS
145	Chemistry of Polymer and Ceramic-Based Injectable Scaffolds and Their Applications in Regenerative Medicine. Chemistry of Materials, 2012, 24, 781-795.	6.7	28
146	Hyperbranched polymers as delivery vectors for oligonucleotides. Journal of Polymer Science Part A, 2012, 50, 2585-2595.	2.3	42
147	Relationship between the Affinity of PEO-PPO-PEO Block Copolymers for Biological Membranes and Their Cellular Effects. Pharmaceutical Research, 2012, 29, 1908-1918.	3.5	28
148	Fc-mediated transport of nanoparticles across airway epithelial cell layers. Journal of Controlled Release, 2012, 158, 479-486.	9.9	41
149	Materials chemistry in the emerging field of synthetic biology. Journal of Materials Chemistry, 2011, 21, 18865.	6.7	1
150	Thermally Triggered Assembly of Cationic Graft Copolymers Containing 2-(2-Methoxyethoxy)ethyl Methacrylate Side Chains. Langmuir, 2011, 27, 13868-13878.	3.5	10
151	Enzyme-passage free culture of mouse embryonic stem cells on thermo-responsive polymer surfaces. Journal of Materials Chemistry, 2011, 21, 6883.	6.7	33
152	Nanoparticles for Nucleic Acid Delivery. , 2011, , 389-410.		5
153	Responsive hybrid block co-polymer conjugates of proteins–controlled architecture to modulate substrate specificity and solution behaviour. Polymer Chemistry, 2011, 2, 1567.	3.9	52
154	Polymer control of ligand display on gold nanoparticles for multimodal switchable cell targeting. Chemical Communications, 2011, 47, 9846.	4.1	55
155	The Missing Lactam-Thermoresponsive and Biocompatible Poly(<i>N</i> -vinylpiperidone) Polymers by Xanthate-Mediated RAFT Polymerization. Macromolecules, 2011, 44, 886-893.	4.8	50
156	Modular Construction of Multifunctional Bioresponsive Cell-Targeted Nanoparticles for Gene Delivery. Bioconjugate Chemistry, 2011, 22, 156-168.	3.6	49
157	Synthetic polymers for biopharmaceutical delivery. Polymer Chemistry, 2011, 2, 48-59.	3.9	48
158	Thermoresponsive Polymer Colloids for Drug Delivery and Cancer Therapy. Macromolecular Bioscience, 2011, 11, 1722-1734.	4.1	90
159	Synthetic Polymers for Simultaneous Bacterial Sequestration and Quorum Sense Interference. Angewandte Chemie - International Edition, 2011, 50, 9852-9856.	13.8	36
160	Design, synthesis and characterization of captopril prodrugs for enhanced percutaneous absorption. Journal of Pharmacy and Pharmacology, 2010, 58, 167-177.	2.4	47
161	Controlled polymer synthesis—from biomimicry towards synthetic biology. Chemical Society Reviews, 2010, 39, 286-300.	38.1	75
162	A computational study of liposome logic: towards cellular computing from the bottom up. Systems and Synthetic Biology, 2010, 4, 157-179.	1.0	16

#	Article	IF	CITATIONS
163	Sweet Talking Double Hydrophilic Block Copolymer Vesicles. Angewandte Chemie - International Edition, 2010, 49, 241-241.	13.8	3
164	Thermally-triggered gelation of PLGA dispersions: Towards an injectable colloidal cell delivery system. Journal of Colloid and Interface Science, 2010, 344, 61-69.	9.4	29
165	Responsive materials. MRS Bulletin, 2010, 35, 659-664.	3.5	0
166	Functional Hyperbranched Polymers: Toward Targeted <i>in Vivo</i> ¹⁹ F Magnetic Resonance Imaging Using Designed Macromolecules. Journal of the American Chemical Society, 2010, 132, 5336-5337.	13.7	168
167	â€`Isothermal' phase transitions and supramolecular architecture changes in thermoresponsive polymers via acid-labile side-chains. Polymer Chemistry, 2010, 1, 1252.	3.9	16
168	Dual stimuli responsive PEG based hyperbranched polymers. Polymer Chemistry, 2010, 1, 827.	3.9	40
169	In Situ Growth of Side-Chain PEG Polymers from Functionalized Human Growth Hormone—A New Technique for Preparation of Enhanced Proteinâ ''Polymer Conjugates. Bioconjugate Chemistry, 2010, 21, 671-678.	3.6	101
170	A highly effective gene delivery vector – hyperbranched poly(2-(dimethylamino)ethyl methacrylate) from in situ deactivation enhanced ATRP. Chemical Communications, 2010, 46, 4698.	4.1	86
171	Interaction of reducible polypeptide gene delivery vectors with supported lipid bilayers: pore formation and structure–function relationships. Soft Matter, 2010, 6, 2517.	2.7	3
172	Responsive polyelectrolyte complexes for triggered release of nucleic acid therapeutics. Chemical Communications, 2010, 46, 5421.	4.1	50
173	Responsive particulate dispersions for reversible building and deconstruction of 3D cell environments. Soft Matter, 2010, 6, 5037.	2.7	18
174	Liposome logic. , 2009, , .		2
175	Biodegradable Thermoresponsive Microparticle Dispersions for Injectable Cell Delivery Prepared Using a Singleâ€ S tep Process. Advanced Materials, 2009, 21, 1809-1813.	21.0	53
176	Fabrication of water-soluble magnetic nanoparticles by ligand-exchange with thermo-responsive polymers. Journal of Magnetism and Magnetic Materials, 2009, 321, 1421-1423.	2.3	25
177	Thermoresponsive and Photocrosslinkable PEGMEMA-PPGMA-EGDMA Copolymers from a One-Step ATRP Synthesis. Biomacromolecules, 2009, 10, 822-828.	5.4	73
178	Photo-Cross-Linked Hydrogels from Thermoresponsive PEGMEMA-PPGMA-EGDMA Copolymers Containing Multiple Methacrylate Groups: Mechanical Property, Swelling, Protein Release, and Cytotoxicity. Biomacromolecules, 2009, 10, 2895-2903.	5.4	69
179	Cell up-take control of gold nanoparticles functionalized with a thermoresponsive polymer. Journal of Materials Chemistry, 2009, 19, 1608.	6.7	118
180	Facile synthesis of responsive nanoparticles with reversible, tunable and rapid thermal transitions from biocompatible constituents. Chemical Communications, 2009, , 6068.	4.1	21

#	Article	IF	CITATIONS
181	Diol–boronic acid complexes integrated by responsive polymers—a route to chemical sensing and logic operations. Soft Matter, 2009, 5, 3839.	2.7	34
182	One-pot controlled synthesis of biodegradable and biocompatible co-polymer micelles. Journal of Materials Chemistry, 2009, 19, 4529.	6.7	39
183	Sweet Talking Double Hydrophilic Block Copolymer Vesicles. Angewandte Chemie - International Edition, 2008, 47, 4847-4850.	13.8	152
184	Selfâ€Immolative Polymers. Angewandte Chemie - International Edition, 2008, 47, 7804-7806.	13.8	46
185	Drugs take control. Nature Materials, 2008, 7, 767-768.	27.5	34
186	Thermal-responsive and photocrosslinkable hyperbranched polymers synthesised by deactivation enhanced ATRP and RAFT polymerisations. Journal of Controlled Release, 2008, 132, e48-e50.	9.9	7
187	Convergence of synthetic and natural polymers: next generation nanomedicines?. Nanomedicine, 2008, 3, 749-751.	3.3	7
188	Selective synthesis of double temperature-sensitive polymer–peptide conjugates. Chemical Communications, 2008, , 4433.	4.1	28
189	Ion-Sensitive "lsothermal―Responsive Polymers Prepared in Water. Journal of the American Chemical Society, 2008, 130, 10852-10853.	13.7	226
190	Physicochemical Characterization of Thermoresponsive Poly(N-isopropylacrylamide)â^'poly(ethylene) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
191	Combination dual responsive polypeptide vectors for enhanced gene delivery. Molecular BioSystems, 2008, 4, 741.	2.9	17
192	Poly(<scp>d</scp> , <scp>l</scp> -lactide- <i>co</i> -glycolide) Dispersions Containing Pluronics: from Particle Preparation to Temperature-Triggered Aggregation. Langmuir, 2008, 24, 7761-7768.	3.5	19
193	Thermo-Responsive PNIPAAm Copolymers with Hydrophobic Spacers. Macromolecular Symposia, 2007, 251, 33-40.	0.7	7
194	Synthesis and Characterization of Variable-Architecture Thermosensitive Polymers for Complexation with DNA $\hat{a} \in$. Langmuir, 2007, 23, 41-49.	3.5	18
195	Control of Bacterial Aggregation by Thermoresponsive Glycopolymers. Journal of the American Chemical Society, 2007, 129, 11014-11015.	13.7	142
196	Synthetic polymers for capture and detection of microorganisms. Analyst, The, 2007, 132, 1075.	3.5	18
197	One-step synthesis of monodisperse water-soluble â€~dual-responsive' magnetic nanoparticles. Chemical Communications, 2007, , 4602-4.	4.1	4
198	Enhanced gene expression through temperature profile-induced variations in molecular architecture	2.8	48

of thermoresponsive polymer vectors. Journal of Gene Medicine, 2007, 9, 44-54. 198

#	Article	IF	CITATIONS
199	Avidin bioconjugate with a thermoresponsive polymer for biological and pharmaceutical applications. International Journal of Pharmaceutics, 2007, 340, 20-28.	5.2	20
200	Varying polymer architecture to deliver drugs. AAPS Journal, 2007, 9, E235-E240.	4.4	28
201	Temperature- and pH-responsive smart polymers for gene delivery. Expert Opinion on Drug Delivery, 2006, 3, 573-581.	5.0	46
202	The imitation game—a computational chemical approach to recognizing life. Nature Biotechnology, 2006, 24, 1203-1206.	17.5	113
203	Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. Journal of Molecular Recognition, 2006, 19, 106-180.	2.1	1,073
204	Responsive Polymers at the Biology/Materials Science Interface. Advanced Materials, 2006, 18, 3321-3328.	21.0	190
205	Grafted thermo- and pH responsive co-polymers: Surface-properties and bacterial adsorption. International Journal of Pharmaceutics, 2005, 295, 77-91.	5.2	30
206	Stimuli responsive polymers for biomedical applications. Chemical Society Reviews, 2005, 34, 276-285.	38.1	1,569
207	Molecularly imprinted drug delivery systems. Advanced Drug Delivery Reviews, 2005, 57, 1836-53.	13.7	140
208	Thermoresponsive polymers as gene delivery vectors: Cell viability, DNA transport and transfection studies. Journal of Controlled Release, 2005, 108, 472-483.	9.9	93
209	Stimuli Responsive Polymers for Biomedical Applications. ChemInform, 2005, 36, no.	0.0	2
210	Bioadhesion at micro-patterned stimuli-responsive polymer brushes. Journal of Materials Chemistry, 2005, 15, 2089.	6.7	118
211	Synthetic polymers as drugs and therapeutics. Journal of Materials Chemistry, 2005, 15, 441-455.	6.7	78
212	Protein-polymer nano-machines. Towards synthetic control of biological processes. Journal of Nanobiotechnology, 2004, 2, 8.	9.1	53
213	Synthetic and biological polymers––merging the interface. European Polymer Journal, 2004, 40, 5-25.	5.4	78
214	Sacrificial spacer and non-covalent routes toward the molecular imprinting of "poorly-functionalized―N-heterocycles. Analytica Chimica Acta, 2004, 504, 63-71.	5.4	23
215	Control of A Multisubunit DNA Motor by a Thermoresponsive Polymer Switch. Journal of the American Chemical Society, 2004, 126, 13208-13209.	13.7	59
216	Thermo and pH responsive polymers as gene delivery vectors: effect of polymer architecture on DNA complexation in vitro. Journal of Controlled Release, 2004, 97, 551-566.	9.9	111

#	Article	IF	CITATIONS
217	Thermo and pH responsive polymers as gene delivery vectors: effect of polymer architecture on DNA complexation in vitro. Journal of Controlled Release, 2004, 97, 551-566.	9.9	45
218	Surface Imprinting. , 2004, , 249-283.		0
219	Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron, 2003, 59, 2025-2057.	1.9	232
220	Adsorbed pluronics on the skin of human volunteers: effects on bacterial adhesion. International Journal of Pharmaceutics, 2003, 251, 155-163.	5.2	11
221	Thermoresponsive Surface-Grafted Poly(Nâ~isopropylacrylamide) Copolymers:Â Effect of Phase Transitions on Protein and Bacterial Attachment. Langmuir, 2003, 19, 2888-2899.	3.5	219
222	Variable Adhesion of Micropatterned Thermoresponsive Polymer Brushes: AFM Investigations of Poly(N-isopropylacrylamide) Brushes Prepared by Surface-Initiated Polymerizations. Advanced Materials, 2002, 14, 1130.	21.0	336
223	Adsorbed poly(ethyleneoxide)-poly(propyleneoxide) copolymers on synthetic surfaces: Spectroscopy and microscopy of polymer structures and effects on adhesion of skin-borne bacteria. Journal of Biomedical Materials Research Part B, 2002, 61, 641-652.	3.1	37
224	Synthetic Polymer Systems in Drug Development ChemInform, 2002, 33, 277-277.	0.0	0
225	Synthetic polymer systems in drug delivery. Expert Opinion on Emerging Drugs, 2001, 6, 345-363.	2.4	11
226	Control of crystal morphologyvia molecular imprinting. Polymer International, 2001, 50, 429-432.	3.1	13
227	Synthetic polymer systems in drug development. Expert Opinion on Emerging Drugs, 2001, 6, 331-343.	2.4	2
228	Surface imprinting of microorganisms. Techniques and Instrumentation in Analytical Chemistry, 2001, , 295-304.	0.0	9
229	Enhancement of selectivity of imprinted polymers via post-imprinting modification of recognition sites. Polymer, 2000, 41, 5583-5590.	3.8	54
230	Bacterial adsorption to thermoresponsive polymer surfaces. Biotechnology Letters, 2000, 22, 141-145.	2.2	42
231	Bacterial Adhesion at Synthetic Surfaces. Applied and Environmental Microbiology, 1999, 65, 4995-5002.	3.1	248
232	Directed nucleation of calcite at a crystal-imprinted polymer surface. Nature, 1999, 398, 312-316.	27.8	165
233	Imprinted Polymers as Protecting Groups for Regioselective Modification of Polyfunctional Substrates. Journal of the American Chemical Society, 1999, 121, 6640-6651.	13.7	84
234	POLYMER TECHNOLOGIES FOR CONTROL OF BACTERIAL ADHESION. , 1999, , 1692-1699.		0

#	Article	IF	CITATIONS
235	Smart polymers for the food industry. Trends in Food Science and Technology, 1997, 8, 140-145.	15.1	60
236	Spatially functionalized polymer surfaces produced via cell-mediated lithography. Advanced Materials, 1997, 9, 751-755.	21.0	78
237	Bacteria-Mediated Lithography of Polymer Surfaces. Journal of the American Chemical Society, 1996, 118, 8771-8772.	13.7	126
238	Selfâ€assembly of main chain liquid crystalline polymers via heteromeric hydrogen bonding. Macromolecular Symposia, 1994, 77, 283-294.	0.7	86
239	Synthesis of a Series of Ethynyl-Substituted Triphenylmethanes. Synthesis, 1992, 1992, 735-737.	2.3	4
240	Electron paramagnetic resonance and magnetic susceptibility studies of new substituted poly(acetylene) derivatives. Journal of Materials Chemistry, 1992, 2, 459.	6.7	5
241	Substituted poly(phenylacetylenes) as possible organic ferromagnets. Synthetic Metals, 1991, 43, 3243.	3.9	0
242	An approach to the preparation of conjugated polyradicals. Polymer Bulletin, 1991, 26, 245-252.	3.3	11
243	Stimuli-Responsive andâ€~Active' Polymers in Drug Delivery. , 0, , 61-88.		О