Carles Mas-Moruno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1598784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cilengitide: The First Anti-Angiogenic Small Molecule Drug Candidate. Design, Synthesis and Clinical Evaluation. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 753-768.	1.7	539
2	A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins. Scientific Reports, 2017, 7, 39805.	3.3	425
3	Tumor Targeting via Integrin Ligands. Frontiers in Oncology, 2013, 3, 222.	2.8	195
4	Multifunctional Coatings and Nanotopographies: Toward Cell Instructive and Antibacterial Implants. Advanced Healthcare Materials, 2019, 8, e1801103.	7.6	172
5	Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bacterial adhesion and biofilm formation. Acta Biomaterialia, 2014, 10, 3522-3534.	8.3	125
6	Antibacterial Properties of hLf1–11 Peptide onto Titanium Surfaces: A Comparison Study Between Silanization and Surface Initiated Polymerization. Biomacromolecules, 2015, 16, 483-496.	5.4	110
7	Introducing Lasso Peptides as Molecular Scaffolds for Drug Design: Engineering of an Integrin Antagonist. Angewandte Chemie - International Edition, 2011, 50, 8714-8717.	13.8	108
8	αvβ3―or α5β1â€Integrinâ€5elective Peptidomimetics for Surface Coating. Angewandte Chemie - International Edition, 2016, 55, 7048-7067.	13.8	99
9	Mimicking bone extracellular matrix: Integrin-binding peptidomimetics enhance osteoblast-like cells adhesion, proliferation, and differentiation on titanium. Colloids and Surfaces B: Biointerfaces, 2015, 128, 191-200.	5.0	82
10	Functionalizing αvβ3―or α5β1‧elective Integrin Antagonists for Surface Coating: A Method To Discriminate Integrin Subtypes In Vitro. Angewandte Chemie - International Edition, 2013, 52, 1572-1575.	13.8	80
11	Regenerating Bone via Multifunctional Coatings: The Blending of Cell Integration and Bacterial Inhibition Properties on the Surface of Biomaterials. ACS Applied Materials & Interfaces, 2017, 9, 21618-21630.	8.0	77
12	Conformational Control of Integrinâ€ 5 ubtype Selectivity in <i>iso</i> DGR Peptide Motifs: A Biological Switch. Angewandte Chemie - International Edition, 2010, 49, 9278-9281.	13.8	76
13	Novel Peptide-Based Platform for the Dual Presentation of Biologically Active Peptide Motifs on Biomaterials. ACS Applied Materials & Interfaces, 2014, 6, 6525-6536.	8.0	73
14	Biselectivity of isoDGR Peptides for Fibronectin Binding Integrin Subtypes α5β1 and αvβ6: Conformational Control through Flanking Amino Acids. Journal of Medicinal Chemistry, 2013, 56, 1509-1519.	6.4	67
15	Solid-phase-assisted synthesis of targeting peptide–PEG–oligo(ethane amino)amides for receptor-mediated gene delivery. Organic and Biomolecular Chemistry, 2012, 10, 3258.	2.8	65
16	Impedimetric antimicrobial peptide-based sensor for the early detection of periodontopathogenic bacteria. Biosensors and Bioelectronics, 2016, 86, 377-385.	10.1	62
17	Antimicrobial Peptides: Powerful Biorecognition Elements to Detect Bacteria in Biosensing Technologies. Molecules, 2018, 23, 1683.	3.8	61
18	Behavior of primary human osteoblasts on trimmed and sandblasted Ti6Al4V surfaces functionalized with integrin αvβ3â€selective cyclic RGD peptides. Journal of Biomedical Materials Research - Part A, 2013, 101A. 87-97.	4.0	55

#	Article	IF	CITATIONS
19	Increasing αvβ3 Selectivity of the Antiâ€Angiogenic Drug Cilengitide by Nâ€Methylation. Angewandte Chemie - International Edition, 2011, 50, 9496-9500.	13.8	54
20	A Molecular Toolkit for the Functionalization of Titaniumâ€Based Biomaterials That Selectively Control Integrinâ€Mediated Cell Adhesion. Chemistry - A European Journal, 2013, 19, 9218-9223.	3.3	53
21	Surface guidance of stem cell behavior: Chemically tailored co-presentation of integrin-binding peptides stimulates osteogenic differentiation in vitro and bone formation in vivo. Acta Biomaterialia, 2016, 43, 269-281.	8.3	51
22	Biofunctional polyethylene glycol coatings on titanium: An in vitro-based comparison of functionalization methods. Colloids and Surfaces B: Biointerfaces, 2017, 152, 367-375.	5.0	50
23	All-in-one trifunctional strategy: A cell adhesive, bacteriostatic and bactericidal coating for titanium implants. Colloids and Surfaces B: Biointerfaces, 2018, 169, 30-40.	5.0	48
24	Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation. Applied Surface Science, 2017, 393, 82-92.	6.1	42
25	Cyclic Aza-peptide Integrin Ligand Synthesis and Biological Activity. Journal of Organic Chemistry, 2012, 77, 5271-5278.	3.2	41
26	Biofunctionalization strategies on tantalum-based materials for osseointegrative applications. Journal of Materials Science: Materials in Medicine, 2015, 26, 109.	3.6	39
27	Pharmacophoric Modifications Lead to Superpotent αvβ3 Integrin Ligands with Suppressed α5β1 Activity. Journal of Medicinal Chemistry, 2014, 57, 3410-3417.	6.4	35
28	Customized Interface Biofunctionalization of Decellularized Extracellular Matrix: Toward Enhanced Endothelialization. Tissue Engineering - Part C: Methods, 2016, 22, 496-508.	2.1	31
29	Tuning Mesenchymal Stem Cell Response onto Titanium–Niobium–Hafnium Alloy by Recombinant Fibronectin Fragments. ACS Applied Materials & Interfaces, 2016, 8, 2517-2525.	8.0	30
30	Towards the cell-instructive bactericidal substrate: exploring the combination of nanotopographical features and integrin selective synthetic ligands. Scientific Reports, 2017, 7, 16363.	3.3	28
31	Installing Multifunctionality on Titanium with RGDâ€Decorated Polyurethaneâ€Polyurea Roxithromycin Loaded Nanoparticles: Toward New Osseointegrative Therapies. Advanced Healthcare Materials, 2015, 4, 1956-1960.	7.6	27
32	A Dual Molecular Biointerface Combining RGD and KRSR Sequences Improves Osteoblastic Functions by Synergizing Integrin and Cell-Membrane Proteoglycan Binding. International Journal of Molecular Sciences, 2019, 20, 1429.	4.1	27
33	New trends in the development of multifunctional peptides to functionalize biomaterials. Journal of Peptide Science, 2022, 28, e3335.	1.4	24
34	Two Different Strategies to Enhance Osseointegration in Porous Titanium: Inorganic Thermo-Chemical Treatment Versus Organic Coating by Peptide Adsorption. International Journal of Molecular Sciences, 2018, 19, 2574.	4.1	21
35	Smallest Peptoids with Antiproliferative Activity on Human Neoplastic Cells. Journal of Medicinal Chemistry, 2007, 50, 2443-2449.	6.4	19
36	Polymerâ€free immobilization of a cyclic RGD peptide on a nitinol stent promotes integrinâ€dependent endothelial coverage of strut surfaces. Journal of Biomedical Materials Research - Part B Applied Biomaterials. 2012, 100B, 637-645.	3.4	19

CARLES MAS-MORUNO

#	Article	IF	CITATIONS
37	Cell adhesive peptides functionalized on CoCr alloy stimulate endothelialization and prevent thrombogenesis and restenosis. Journal of Biomedical Materials Research - Part A, 2017, 105, 973-983.	4.0	18
38	Evolution of microstructure and residual stresses in gradually ground/polished 3Y-TZP. Journal of the European Ceramic Society, 2020, 40, 1582-1591.	5.7	17
39	Polyethylene Glycol Pulsed Electrodeposition for the Development of Antifouling Coatings on Titanium. Coatings, 2020, 10, 456.	2.6	17
40	Design of a minimized cyclic tetrapeptide that neutralizes bacterial endotoxins. Journal of Peptide Science, 2006, 12, 491-496.	1.4	16
41	Surface functionalization of biomaterials for bone tissue regeneration and repair. , 2018, , 73-100.		16
42	An Engineered Biomimetic Peptide Regulates Cell Behavior by Synergistic Integrin and Growth Factor Signaling. Advanced Healthcare Materials, 2021, 10, 2001757.	7.6	16
43	Peptidic biofunctionalization of laser patterned dental zirconia: A biochemical-topographical approach. Materials Science and Engineering C, 2021, 125, 112096.	7.3	16
44	The Impact of Amino Acid Side Chain Mutations in Conformational Design of Peptides and Proteins. Chemistry - A European Journal, 2010, 16, 5385-5390.	3.3	15
45	αvβ3―oder α5β1â€Integrinâ€selektive Peptidmimetika für die Oberflähenbeschichtung. Angewandte Chen 128, 7162-7183.	nie, 2016, 2.0	15
46	Nanostructure Formation Enhances the Activity of LPSâ€Neutralizing Peptides. ChemMedChem, 2008, 3, 1748-1755.	3.2	13
47	Bioactive compounds immobilized on Ti and TiNbHf: AFM-based investigations of biofunctionalization efficiency and cell adhesion. Colloids and Surfaces B: Biointerfaces, 2015, 136, 704-711.	5.0	13
48	Control of stem cell response and bone growth on biomaterials by fully non-peptidic integrin selective ligands. Biomaterials Science, 2019, 7, 1281-1285.	5.4	13
49	On-Growth and In-Growth Osseointegration Enhancement in PM Porous Ti-Scaffolds by Two Different Bioactivation Strategies: Alkali Thermochemical Treatment and RGD Peptide Coating. International Journal of Molecular Sciences, 2022, 23, 1750.	4.1	10
50	Influence of grinding/polishing on the mechanical, phase stability and cell adhesion properties of yttria-stabilized zirconia. Journal of the European Ceramic Society, 2020, 40, 4304-4314.	5.7	9
51	Chemically Diverse Multifunctional Peptide Platforms with Antimicrobial and Cell Adhesive Properties. ChemBioChem, 2021, 22, 839-844.	2.6	9
52	The Integrin Ligand <i>c</i> (RGDf(<i>N</i> Me)Nal) Reduces Neointimal Hyperplasia in a Polymerâ€Free Drugâ€Eluting Stent System. ChemMedChem, 2014, 9, 1413-1418.	3.2	8
53	A versatile click chemistry-based approach for functionalizing biomaterials of diverse nature with bioactive peptides. Chemical Communications, 2021, 57, 982-985.	4.1	7
54	Effectiveness of Direct Laser Interference Patterning and Peptide Immobilization on Endothelial Cell Migration for Cardio-Vascular Applications: An In Vitro Study. Nanomaterials, 2022, 12, 1217.	4.1	6

#	ARTICLE	IF	CITATIONS
55	Design and facile solidâ€phase synthesis of peptideâ€based LPSâ€inhibitors containing PEGâ€like functionalities. Biopolymers, 2009, 92, 508-517.	2.4	4
56	Blocking methods to prevent non-specific adhesion of mesenchymal stem cells to titanium and evaluate the efficiency of surface functionalization: albumin vs poly(ethylene glycol) coating. Biomecánica, 0, , .	0.1	4
57	Tiratricol Neutralizes Bacterial Endotoxins and Reduces Lipopolysaccharideâ€Induced TNFâ€Î± Production in the Cell. Chemical Biology and Drug Design, 2008, 72, 320-328.	3.2	3
58	Trivalent PEGylated Platform for the Conjugation of Bioactive Compounds. Bioconjugate Chemistry, 2011, 22, 2172-2178.	3.6	1
59	Biomimetic Peptides: An Engineered Biomimetic Peptide Regulates Cell Behavior by Synergistic Integrin and Growth Factor Signaling (Adv. Healthcare Mater. 7/2021). Advanced Healthcare Materials, 2021, 10, 2170032.	7.6	0
60	Funcionalización de superffies anti-fouling sobre titanio para mejora de sus propiedades. TecnologÃa, Ciencia Y Educación, 0, , 83-93.	0.0	0
61	Editorial: "Peptides in biomaterials science: New trends and applications― Journal of Peptide Science, 2021, 28, e3379.	1.4	0