Olaf Rotzschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1598507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histone acetylome-wide associations in immune cells from individuals with active Mycobacterium tuberculosis infection. Nature Microbiology, 2022, 7, 312-326.	13.3	9
2	Assessment of T-cell Reactivity to the SARS-CoV-2 Omicron Variant by Immunized Individuals. JAMA Network Open, 2022, 5, e2210871.	5.9	42
3	Parkinson's Disease-Specific Autoantibodies against the Neuroprotective Co-Chaperone STIP1. Cells, 2022, 11, 1649.	4.1	4
4	Viral Dynamics and Immune Correlates of Coronavirus Disease 2019 (COVID-19) Severity. Clinical Infectious Diseases, 2021, 73, e2932-e2942.	5.8	143
5	Atopic dermatitis microbiomes stratify into ecologic dermotypes enabling microbial virulence and disease severity. Journal of Allergy and Clinical Immunology, 2021, 147, 1329-1340.	2.9	26
6	Inverse association of FCER1A allergy variant in monocytes and plasmacytoid dendritic cells. Journal of Allergy and Clinical Immunology, 2021, 147, 1510-1513.e8.	2.9	4
7	Asymptomatic COVIDâ€19: disease tolerance with efficient antiâ€viral immunity against SARSâ€CoVâ€2. EMBO Molecular Medicine, 2021, 13, e14045.	6.9	36
8	FUT6 deficiency compromises basophil function by selectively abrogating their sialyl-Lewis x expression. Communications Biology, 2021, 4, 832.	4.4	7
9	Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nature Genetics, 2021, 53, 1300-1310.	21.4	590
10	Data-Driven Analysis of COVID-19 Reveals Persistent Immune Abnormalities in Convalescent Severe Individuals. Frontiers in Immunology, 2021, 12, 710217.	4.8	8
11	Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19. Nature Communications, 2020, 11, 5243.	12.8	138
12	Whole-genome sequencing identifies responders to Pembrolizumab in relapse/refractory natural-killer/T cell lymphoma. Leukemia, 2020, 34, 3413-3419.	7.2	42
13	Gut–Brain Axis: Potential Factors Involved in the Pathogenesis of Parkinson's Disease. Frontiers in Neurology, 2020, 11, 849.	2.4	13
14	Refining Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Genetic Loci by Integrating Summary Data From Genome-wide Association, Gene Expression, and DNA Methylation Studies. Biological Psychiatry, 2020, 88, 470-479.	1.3	14
15	The role of IgA in COVID-19. Brain, Behavior, and Immunity, 2020, 87, 182-183.	4.1	92
16	Differential Transcriptomic Response To Aspirin Challenge In Blood Eosinophils From Patients With Aspirin Exacerbated Respiratory Disease (AERD). Journal of Allergy and Clinical Immunology, 2020, 145, AB120.	2.9	0
17	Resistin expression in human monocytes is controlled by two linked promoter SNPs mediating NFKB p50/p50 binding and C-methylation. Scientific Reports, 2019, 9, 15245.	3.3	8
18	A Co-culture Model of PBMC and Stem Cell Derived Human Nasal Epithelium Reveals Rapid Activation of NK and Innate T Cells Upon Influenza A Virus Infection of the Nasal Epithelium. Frontiers in Immunology, 2018, 9, 2514.	4.8	16

#	Article	IF	CITATIONS
19	Systematic characterization of basophil anergy. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 373-384.	5.7	26
20	A functional SNP associated with atopic dermatitis controls cell type-specific methylation of the VSTM1 gene locus. Genome Medicine, 2017, 9, 18.	8.2	30
21	Neuropeptide Y associated with asthma in young adults. Neuropeptides, 2016, 59, 117-121.	2.2	19
22	Immune Modulation and Prevention of Autoimmune Disease by Repeated Sequences from Parasites Linked to Self Antigens. Journal of NeuroImmune Pharmacology, 2016, 11, 749-762.	4.1	9
23	Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncolmmunology, 2016, 5, e1191731.	4.6	178
24	Evaluation of Serum Levels of Osteopontin and IgG Anti-Osteopontin Autoantibodies As Potential Biomarkers of Immune Activation in Patients with Allergic Diseases. Journal of Allergy and Clinical Immunology, 2016, 137, AB394.	2.9	0
25	Functional variants of 17q12-21 are associated with allergic asthma but not allergic rhinitis. Journal of Allergy and Clinical Immunology, 2016, 137, 758-766.e3.	2.9	34
26	Vδ2+ and α/β T cells show divergent trajectories during human aging. Oncotarget, 2016, 7, 44906-44918.	1.8	17
27	Establishing Criteria for Human Mesenchymal Stem Cell Potency. Stem Cells, 2015, 33, 1878-1891.	3.2	163
28	Expanding Regulatory T Cells Alleviates Chikungunya Virus-Induced Pathology in Mice. Journal of Virology, 2015, 89, 7893-7904.	3.4	49
29	Genetic variants of inducible costimulator are associated with allergic asthma susceptibility. Journal of Allergy and Clinical Immunology, 2015, 135, 556-558.e13.	2.9	4
30	Discovery of six new susceptibility loci and analysis of pleiotropic effects in leprosy. Nature Genetics, 2015, 47, 267-271.	21.4	103
31	Cell Specific eQTL Analysis without Sorting Cells. PLoS Genetics, 2015, 11, e1005223.	3.5	115
32	Evaluation of the applicability of the Immunoâ€solidâ€phase allergen chip (ISAC) assay in atopic patients in Singapore. Clinical and Translational Allergy, 2015, 5, 9.	3.2	11
33	Genome-wide analysis of the genetic regulation of gene expression in human neutrophils. Nature Communications, 2015, 6, 7971.	12.8	23
34	ArchiLD: Hierarchical Visualization of Linkage Disequilibrium in Human Populations. PLoS ONE, 2014, 9, e86761.	2.5	2
35	A comprehensive association analysis confirms <i>ZMIZ1</i> to be a susceptibility gene for vitiligo in Chinese population. Journal of Medical Genetics, 2014, 51, 345-353.	3.2	21
36	Genetic analysis of an allergic rhinitis cohort reveals an intercellular epistasis between FAM134B and CD39. BMC Medical Genetics, 2014, 15, 73.	2.1	26

#	Article	IF	CITATIONS
37	γ/δT cell subsets in human aging using the classical α/β T cell model. Journal of Leukocyte Biology, 2014, 96, 647-655.	3.3	43
38	Association of Interleukin-13 SNP rs20541 (Arg>Cln) to allergic rhinitis in an Asian population of ethnic Chinese in Singapore. Gene, 2013, 529, 357-358.	2.2	9
39	Active Suppression Induced by Repetitive Self-Epitopes Protects against EAE Development. PLoS ONE, 2013, 8, e64888.	2.5	13
40	Influenza A Virus Infection Results in a Robust, Antigen-Responsive, and Widely Disseminated Foxp3 ⁺ Regulatory T Cell Response. Journal of Virology, 2012, 86, 2817-2825.	3.4	84
41	Early neutralizing IgG response to Chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. EMBO Molecular Medicine, 2012, 4, 330-343.	6.9	177
42	Immune modulation of inflammatory conditions: regulatory T cells for treatment of GvHD. Immunologic Research, 2012, 53, 200-212.	2.9	19
43	Characterization of Structural Features Controlling the Receptiveness of Empty Class II MHC Molecules. PLoS ONE, 2011, 6, e18662.	2.5	31
44	Bidirectional binding of invariant chain peptides to an MHC class II molecule. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22219-22224.	7.1	67
45	Absence of Leucine Zipper in the Natural FOXP3Δ2Δ7 Isoform Does Not Affect Dimerization but Abrogates Suppressive Capacity. PLoS ONE, 2009, 4, e6104.	2.5	43
46	CD49d provides access to "untouched―human Foxp3+ Treg free of contaminating effector cells. Blood, 2009, 113, 827-836.	1.4	132
47	In vivo–activated CD103+ Foxp3+ Tregs: of men and mice. Blood, 2009, 113, 2119-2120.	1.4	10
48	Hydrolysis of extracellular ATP by CD39+ Treg cells: context matters!. Blood, 2008, 111, 965-966.	1.4	5
49	Anchor Side Chains of Short Peptide Fragments Trigger Ligand-Exchange of Class II MHC Molecules. PLoS ONE, 2008, 3, e1814.	2.5	34
50	Multimerized T cell epitopes protect from experimental autoimmune diabetes by inducing dominant tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9393-9398.	7.1	14
51	Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood, 2007, 110, 1225-1232.	1.4	1,074
52	Design of protease-resistant myelin basic protein-derived peptides by cleavage site directed amino acid substitutions. Biochemical Pharmacology, 2007, 74, 1514-1523.	4.4	9
53	Small Organic Compounds Enhance Antigen Loading of Class II Major Histocompatibility Complex Proteins by Targeting the Polymorphic P1 Pocket. Journal of Biological Chemistry, 2006, 281, 38535-38542.	3.4	38
54	Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. 1991. Journal of Immunology, 2006, 177, 2741-7.	0.8	12

#	Article	IF	CITATIONS
55	CCR6 expression defines regulatory effector/memory-like cells within the CD25+CD4+ T-cell subset. Blood, 2005, 105, 2877-2886.	1.4	275
56	"Chemical Analogues―of HLA-DM Can Induce a Peptide-receptive State in HLA-DR Molecules. Journal of Biological Chemistry, 2004, 279, 50684-50690.	3.4	39
57	Cathepsin G, and Not the Asparagine-Specific Endoprotease, Controls the Processing of Myelin Basic Protein in Lysosomes from Human B Lymphocytes. Journal of Immunology, 2004, 172, 5495-5503.	0.8	73
58	Production of neuroprotective NGF in astrocyte–T helper cell cocultures is upregulated following antigen recognition. Journal of Neuroimmunology, 2004, 149, 59-65.	2.3	9
59	Small-molecular compounds enhance the loading of APC with encephalitogenic MBP protein. Journal of Autoimmunity, 2003, 20, 63-69.	6.5	13
60	Ligand Exchange of Major Histocompatibility Complex Class II Proteins Is Triggered by H-bond Donor Groups of Small Molecules. Journal of Biological Chemistry, 2002, 277, 2709-2715.	3.4	45
61	A pH-sensitive histidine residue as control element for ligand release from HLA-DR molecules. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16946-16950.	7.1	60
62	The final cut: how ERAP1 trims MHC ligands to size. Nature Immunology, 2002, 3, 1121-1122.	14.5	21
63	Antigen-specific elimination of T cells induced by oligomerized hemagglutinin (HA) 306-318. European Journal of Immunology, 2000, 30, 3012-3020.	2.9	17
64	Induction and Suppression of an Autoimmune Disease by Oligomerized T Cell Epitopes. Journal of Experimental Medicine, 2000, 191, 717-730.	8.5	41
65	The Diversity of Antigen-Specific TCR Repertoires Reflects the Relative Complexity of Epitopes Recognized. Human Immunology, 1997, 54, 117-128.	2.4	19
66	Peptide motifs of HLA-B38 and B39 molecules. Immunogenetics, 1995, 41, 162-164.	2.4	42
67	Peptide motifs of HLA-B58, B60, B61, and B62 molecules. Immunogenetics, 1995, 41, 165-168.	2.4	67
68	Peptide motifs of HLA-B51, -B52 and -B78 molecules, and implications for Behfet's disease. International Immunology, 1995, 7, 223-228.	4.0	108
69	Peptide motifs of HLA-A1,-A11,-A31, and-A33 molecules. Immunogenetics, 1994, 40, 238-241.	2.4	86
70	Peptide motifs of HLA-A3, -A24, and -B7 molecules as determined by pool sequencing. Immunogenetics, 1994, 40, 306-308.	2.4	75
71	Isolation of naturally processed peptides recognized by cytolytic T lymphocytes (CTL) on human melanoma cells in association with HLA-A2.1. International Journal of Cancer, 1994, 57, 413-418.	5.1	45
72	Origin, structure and motifs of naturally processed MHC class II ligands. Current Opinion in Immunology, 1994, 6, 45-51.	5.5	87

#	Article	IF	CITATIONS
73	A prominent natural H-2 Kd ligand is derived from protein tyrosine kinase JAK1. Immunology Letters, 1993, 35, 235-237.	2.5	13
74	MHC molecules as peptide receptors. Current Opinion in Immunology, 1993, 5, 35-44.	5.5	156
75	Qa-2 molecules are peptide receptors of higher stringency than ordinary class I molecules. Nature, 1993, 361, 642-644.	27.8	98
76	Both Human and Mouse Cells Expressing H-2Kb and Ovalbumin Process the Same Peptide, SIINFEKL. Cellular Immunology, 1993, 150, 447-452.	3.0	26
77	Consensus motifs and peptide ligands of MHC class I molecules. Seminars in Immunology, 1993, 5, 81-94.	5.6	111
78	Natural peptide ligand motifs of two HLA molecules associated with myasthenia gravis. International Immunology, 1993, 5, 1229-1237.	4.0	74
79	A self peptide naturally presented by both H-2Kb and H-2Kbm1 molecules demonstrates MHC restriction of self tolerance at the molecular level. International Immunology, 1992, 4, 321-325.	4.0	13
80	Molecular Modeling of the Class I Human Histocompatibility Molecule HLA-A2 Presenting an Allele-Specific Nonapeptide from Influenza Matrix Protein. Angewandte Chemie International Edition in English, 1992, 31, 886-890.	4.4	9
81	Gene transfer experiments imply instructive role of major histocompatibility complex class I molecules in cellular peptide processing. European Journal of Immunology, 1992, 22, 655-659.	2.9	22
82	Specificity of antigen processing for MHC class I restricted presentation is conserved between mouse and man. European Journal of Immunology, 1992, 22, 1323-1326.	2.9	21
83	Peptide motifs of closely related HLA class I molecules encompass substantial differences. European Journal of Immunology, 1992, 22, 2453-2456.	2.9	79
84	Uneven tissue distribution of minor histocompatibility proteins versus peptides is caused by MHC expression. Cell, 1991, 65, 633-640.	28.9	66
85	Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature, 1991, 351, 290-296.	27.8	2,407
86	Exact prediction of a natural T cell epitope. European Journal of Immunology, 1991, 21, 2891-2894.	2.9	421
87	Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature, 1990, 348, 248-251.	27.8	439
88	lsolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature, 1990, 348, 252-254.	27.8	795