Liang Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1597565/publications.pdf

Version: 2024-02-01

172457 302126 7,574 48 29 39 h-index citations g-index papers 48 48 48 5522 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultrafast heterodyne mode imaging and refractive index mapping of a femtosecond laser written multimode waveguide. Optics Letters, 2022, 47, 214.	3.3	2
2	Vortex microlaser with ultrafast tunability., 2021,,.		0
3	Higher-dimensional supersymmetric microlaser arrays. Science, 2021, 372, 403-408.	12.6	51
4	Non-Hermiticity-Governed Active Photonic Resonances. Physical Review Letters, 2021, 126, 163901.	7.8	13
5	Near-infrared to ultra-violet frequency conversion in chalcogenide metasurfaces. Nature Communications, 2021, 12, 5833.	12.8	25
6	Supersymmetric Microlaser Arrays in Two Dimensions and Beyond. , 2021, , .		0
7	Symmetry-Enabled New Microlasers. , 2021, , .		O
8	Repeatable and Reprogrammable Shape Morphing from Photoresponsive Gold Nanorod/Liquid Crystal Elastomers. Advanced Materials, 2020, 32, e2004270.	21.0	109
9	Ultrafast control of fractional orbital angular momentum of microlaser emissions. Light: Science and Applications, 2020, 9, 179.	16.6	34
10	Tunable topological charge vortex microlaser. Science, 2020, 368, 760-763.	12.6	180
11	Photocurrent detection of the orbital angular momentum of light. Science, 2020, 368, 763-767.	12.6	113
12	Exploring Integrated Photonics with Symmetry and Topology. , 2020, , .		0
13	Orbital angular momentum microlaser: from the first demonstration to tunability. , 2020, , .		O
14	Non-Hermitian topological light steering. Science, 2019, 365, 1163-1166.	12.6	288
15	Optogenomic Interfaces: Bridging Biological Networks With the Electronic Digital World. Proceedings of the IEEE, 2019, 107, 1387-1401.	21.3	13
16	Experimental Realization of Multiple Topological Edge States in a 1D Photonic Lattice. Laser and Photonics Reviews, 2019, 13, 1800202.	8.7	36
17	Non-Hermitian heterostructure for two-parameter sensing. Optics Letters, 2019, 44, 1626.	3.3	9
18	Supersymmetric microring laser arrays. Photonics Research, 2019, 7, 363.	7.0	53

#	Article	IF	Citations
19	Exceptional point engineered glass slide for microscopic thermal mapping. Nature Communications, 2018, 9, 1764.	12.8	37
20	Photonic zero mode in a non-Hermitian photonic lattice. Nature Communications, 2018, 9, 1308.	12.8	191
21	Topological hybrid silicon microlasers. Nature Communications, 2018, 9, 981.	12.8	345
22	Topological multiband photonic superlattices. Physical Review A, 2018, 98, .	2.5	27
23	Elimination of Spatial Hole Burning in Microlasers for Stability and Efficiency Enhancement. ACS Photonics, 2018, 5, 3016-3022.	6.6	15
24	Supersymmetry-guided method for mode selection and optimization in coupled systems. Optics Letters, 2018, 43, 3758.	3.3	25
25	Non-Hermitian photonics promises exceptional topology of light. Nature Communications, 2018, 9, 2674.	12.8	127
26	Supercharge optical arrays. Optics Letters, 2018, 43, 4927.	3.3	21
27	Non-Hermitian photonics based on parity–time symmetry. Nature Photonics, 2017, 11, 752-762.	31.4	917
28	Unidirectional lasing in semiconductor microring lasers at an exceptional point [Invited]. Photonics Research, 2017, 5, B1.	7.0	56
29	Integrated photonics engineered around exceptional points. , 2016, , .		0
30	Integrated Photonics at Exceptional Points., 2016,,.		1
31	Photonic topological insulator with broken time-reversal symmetry. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4924-4928.	7.1	193
32	Surface phononic graphene. Nature Materials, 2016, 15, 1243-1247.	27.5	89
33	Orbital angular momentum microlaser. Science, 2016, 353, 464-467.	12.6	509
34	Lasing and anti-lasing in a single cavity. Nature Photonics, 2016, 10, 796-801.	31.4	276
35	Metawaveguide for Asymmetric Interferometric Light-Light Switching. Physical Review Letters, 2016, 117, 193901.	7.8	49
36	Acoustic asymmetric transmission based on time-dependent dynamical scattering. Scientific Reports, 2015, 5, 10880.	3.3	47

#	Article	IF	CITATIONS
37	Robust Light State by Quantum Phase Transition in Non-Hermitian Optical Materials. Scientific Reports, 2015, 5, 17022.	3.3	53
38	Parity-time optical metamaterials. , 2015, , .		0
39	Parity-time optical metamaterials. , 2015, , .		0
40	Adiabatic elimination-based coupling control in densely packed subwavelength waveguides. Nature Communications, 2015, 6, 7565.	12.8	74
41	PT-symmetric microring laser-absorber. Optics Letters, 2014, 39, 5026.	3.3	69
42	Demonstration of a large-scale optical exceptional point structure. Optics Express, 2014, 22, 1760.	3.4	134
43	Unidirectional Transmission Based on a Passive PT Symmetric Grating With a Nonlinear Silicon Distributed Bragg Reflector Cavity. IEEE Photonics Journal, 2014, 6, 1-7.	2.0	11
44	Single-mode laser by parity-time symmetry breaking. Science, 2014, 346, 972-975.	12.6	1,306
45	Lattice strain effects on the optical properties of MoS2 nanosheets. Scientific Reports, 2014, 4, 5649.	3.3	297
46	Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at opticalÂfrequencies. Nature Materials, 2013, 12, 108-113.	27.5	1,190
47	Room-temperature subwavelength metallo-dielectric lasers. Nature Photonics, 2010, 4, 395-399.	31.4	464
48	Low threshold gain metal coated laser nanoresonators. Optics Letters, 2008, 33, 1261.	3.3	125