
Mireia Sospedra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1597113/publications.pdf Version: 2024-02-01

MIDEIA SOSDEDDA

#	Article	IF	CITATIONS
1	IMMUNOLOGY OF MULTIPLE SCLEROSIS. Annual Review of Immunology, 2005, 23, 683-747.	21.8	1,982
2	Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 2013, 45, 1353-1360.	21.4	1,213
3	Memory B Cells Activate Brain-Homing, Autoreactive CD4+ T Cells in Multiple Sclerosis. Cell, 2018, 175, 85-100.e23.	28.9	350
4	Functional antigen-independent synapses formed between T cells and dendritic cells. Nature Immunology, 2001, 2, 925-931.	14.5	268
5	Antigen-Specific Tolerance by Autologous Myelin Peptide–Coupled Cells: A Phase 1 Trial in Multiple Sclerosis. Science Translational Medicine, 2013, 5, 188ra75.	12.4	262
6	T Lymphocyte Priming by Neutrophil Extracellular Traps Links Innate and Adaptive Immune Responses. Journal of Immunology, 2012, 188, 3150-3159.	0.8	236
7	Neutrophils in multiple sclerosis are characterized by a primed phenotype. Journal of Neuroimmunology, 2012, 242, 60-71.	2.3	190
8	Immunology of Multiple Sclerosis. Seminars in Neurology, 2016, 36, 115-127.	1.4	177
9	HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis. Cell, 2020, 183, 1264-1281.e20.	28.9	133
10	Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.	28.9	115
11	Singleâ€cell analysis of intrathyroidal lymphocytes shows differential cytokine expression in Hashimoto's and Graves' disease. European Journal of Immunology, 1997, 27, 3290-3302.	2.9	109
12	Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis. European Journal of Immunology, 2016, 46, 2078-2090.	2.9	101
13	Natalizumab treatment perturbs memory†and marginal zoneâ€like Bâ€cell homing in secondary lymphoid organs in multiple sclerosis. European Journal of Immunology, 2012, 42, 790-798.	2.9	95
14	Multiple sclerosis candidate autoantigens except myelin oligodendrocyte glycoprotein are transcribed in human thymus. European Journal of Immunology, 2002, 32, 2737-2747.	2.9	82
15	Central role of JC virus-specific CD4+ lymphocytes in progressive multi-focal leucoencephalopathy-immune reconstitution inflammatory syndrome. Brain, 2011, 134, 2687-2702.	7.6	78
16	Recognition of Conserved Amino Acid Motifs of Common Viruses and Its Role in Autoimmunity. PLoS Pathogens, 2005, 1, e41.	4.7	73
17	GDP- <scp>l</scp> -fucose synthase is a CD4 ⁺ T cell–specific autoantigen in DRB3*02:02 patients with multiple sclerosis. Science Translational Medicine, 2018, 10, .	12.4	71
18	Treating Progressive Multifocal Leukoencephalopathy With Interleukin 7 and Vaccination With JC Virus Capsid Protein VP1. Clinical Infectious Diseases, 2014, 59, 1588-1592.	5.8	64

MIREIA SOSPEDRA

#	Article	IF	CITATIONS
19	Human CD4+ T cell subsets differ in their abilities to cross endothelial and epithelial brain barriers in vitro. Fluids and Barriers of the CNS, 2020, 17, 3.	5.0	64
20	Gender differences in circulating levels of neutrophil extracellular traps in serum of multiple sclerosis patients. Journal of Neuroimmunology, 2013, 261, 108-119.	2.3	60
21	Adoptive Transfer of EBV Specific CD8+ T Cell Clones Can Transiently Control EBV Infection in Humanized Mice. PLoS Pathogens, 2014, 10, e1004333.	4.7	60
22	Insulin alleles and autoimmune regulator (AIRE) gene expression both influence insulin expression in the thymus. Journal of Autoimmunity, 2005, 25, 312-318.	6.5	50
23	Redundancy in Antigen-Presenting Function of the HLA-DR and -DQ Molecules in the Multiple Sclerosis-Associated HLA-DR2 Haplotype. Journal of Immunology, 2006, 176, 1951-1961.	0.8	49
24	Antigen-Specific Therapies in Multiple Sclerosis. International Reviews of Immunology, 2005, 24, 393-413.	3.3	48
25	B cells in multiple sclerosis. Current Opinion in Neurology, 2018, 31, 256-262.	3.6	48
26	Molecular mimicry in multiple sclerosis. Autoimmunity, 2006, 39, 3-8.	2.6	45
27	Central role of Th2/Tc2 lymphocytes in pattern <scp>II</scp> multiple sclerosis lesions. Annals of Clinical and Translational Neurology, 2015, 2, 875-893.	3.7	45
28	Use of combinatorial peptide libraries for T-cell epitope mapping. Methods, 2003, 29, 236-247.	3.8	41
29	JC virus granule cell neuronopathy and GCN–IRIS under natalizumab treatment. Annals of Neurology, 2013, 74, 622-626.	5.3	41
30	HLA-DR15-derived self-peptides are involved in increased autologous T cell proliferation in multiple sclerosis. Brain, 2013, 136, 1783-1798.	7.6	40
31	Mechanisms of immune escape in central nervous system infection with neurotropic <scp>JC</scp> virus variant. Annals of Neurology, 2016, 79, 404-418.	5.3	40
32	Broadly neutralizing human monoclonal JC polyomavirus VP1–specific antibodies as candidate therapeutics for progressive multifocal leukoencephalopathy. Science Translational Medicine, 2015, 7, 306ra150.	12.4	38
33	Immunology of progressive multifocal leukoencephalopathy. Journal of NeuroVirology, 2015, 21, 614-622.	2.1	36
34	Phenotypic and functional complexity of brain-infiltrating T cells in Rasmussen encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e419.	6.0	34
35	Brain Citrullination Patterns and T Cell Reactivity of Cerebrospinal Fluid-Derived CD4+ T Cells in Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 540.	4.8	31
36	Sphingosine-1 Phosphate and Central Nervous System. Current Topics in Microbiology and Immunology, 2014, 378, 149-170.	1.1	30

MIREIA SOSPEDRA

#	Article	IF	CITATIONS
37	TCR Bias and HLA Cross-Restriction Are Strategies of Human Brain-Infiltrating JC Virus-Specific CD4+ T Cells during Viral Infection. Journal of Immunology, 2012, 189, 3618-3630.	0.8	29
38	Antigen-specific therapies in MS — Current concepts and novel approaches. Journal of the Neurological Sciences, 2008, 274, 18-22.	0.6	28
39	Boswellic acids reduce <scp>T</scp> h17 differentiation via blockade of <scp>IL</scp> â€1βâ€mediated <scp>IRAK</scp> 1 signaling. European Journal of Immunology, 2014, 44, 1200-1212.	2.9	25
40	NR1H3 p.Arg415Gln Is Not Associated to Multiple Sclerosis Risk. Neuron, 2016, 92, 333-335.	8.1	24
41	Detailed Characterization of T Cell Receptor Repertoires in Multiple Sclerosis Brain Lesions. Frontiers in Immunology, 2018, 9, 509.	4.8	24
42	Multiple sclerosis: doubling down on MHC. Trends in Genetics, 2021, 37, 784-797.	6.7	23
43	Cerebrospinal Fluid-Infiltrating CD4 + T Cells Recognize Borrelia burgdorferi Lysine-Enriched Protein Domains and Central Nervous System Autoantigens in Early Lyme Encephalitis. Infection and Immunity, 2007, 75, 243-251.	2.2	22
44	Long-term safety and efficacy of natalizumab in relapsing-remitting multiple sclerosis: impact on quality of life. Patient Related Outcome Measures, 2014, 5, 25.	1.2	22
45	Clonotypic analysis of cerebrospinal fluid T cells during disease exacerbation and remission in a patient with multiple sclerosis. Journal of Neuroimmunology, 2006, 171, 177-183.	2.3	20
46	Degenerate TCR recognition and dual DR2 restriction of autoreactive T cells: Implications for the initiation of the autoimmune response in multiple sclerosis. European Journal of Immunology, 2008, 38, 1297-1309.	2.9	20
47	T Cell Epitope Mapping of JC Polyoma Virus-Encoded Proteome Reveals Reduced T Cell Responses in HLA-DRB1*04:01 ⁺ Donors. Journal of Virology, 2013, 87, 3393-3408.	3.4	20
48	Antigen-Specific Immune Tolerance in Multiple Sclerosis—Promising Approaches and How to Bring Them to Patients. Frontiers in Immunology, 2021, 12, 640935.	4.8	20
49	HLA-DM and invariant chain are expressed by thyroid follicular cells, enabling the expression of compact DR molecules. International Immunology, 1999, 11, 269-277.	4.0	19
50	Different patterns of nicotinic acetylcholine receptor subunit transcription in human thymus. Journal of Neuroimmunology, 2004, 149, 147-159.	2.3	18
51	T-Cell Specificity Influences Disease Heterogeneity in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	18
52	Displacement chromatography as first separating step in online two-dimensional liquid chromatography coupled to mass spectrometry analysis of a complex protein sample—The proteome of neutrophils. Journal of Chromatography A, 2012, 1232, 288-294.	3.7	16
53	Comparative Analysis of T-Cell Responses to Aquaporin-4 and Myelin Oligodendrocyte Glycoprotein in Inflammatory Demyelinating Central Nervous System Diseases. Frontiers in Immunology, 2020, 11, 1188.	4.8	16
54	Altered CSF Albumin Quotient Links Peripheral Inflammation and Brain Damage in MS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	15

MIREIA SOSPEDRA

#	Article	IF	CITATIONS
55	Effects of natalizumab therapy on intrathecal antiviral antibody responses in MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e621.	6.0	13
56	Combining positional scanning peptide libraries, HLA-DR transfectants and bioinformatics to dissect the epitope spectrum of HLA class II cross-restricted CD4+ T cell clones. Journal of Immunological Methods, 2010, 353, 93-101.	1.4	10
57	OMIPâ€033: A comprehensive single step staining protocol for human T―and Bâ€cell subsets. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 629-632.	1.5	10
58	Antibody responses following induction of antigen-specific tolerance with antigen-coupled cells. Multiple Sclerosis Journal, 2015, 21, 651-655.	3.0	9
59	When T cells recognize a pattern, they might cause trouble. Current Opinion in Immunology, 2006, 18, 697-703.	5.5	6
60	Characterization of Antigen-Induced CD4+ T-Cell Senescence in Multiple Sclerosis. Frontiers in Neurology, 2022, 13, 790884.	2.4	6
61	Mechanistic and Biomarker Studies to Demonstrate Immune Tolerance in Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 787498.	4.8	5
62	Use of Positional Scanning Libraries to Identify Immunologically Relevant Peptides. , 2013, , 617-624.		1
63	Prevention and therapy of JC polyomavirus-mediated progressive multifocal leukoencephalopathy – a realistic possibility?. Swiss Medical Weekly, 2017, 147, w14520.	1.6	1
64	When a T cell engages a B cell: novel insights in multiple sclerosis. Swiss Medical Weekly, 2020, 150, w20330.	1.6	1