List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1596539/publications.pdf Version: 2024-02-01

FRIC CLOT

#	Article	IF	CITATIONS
1	C—H Bond Activation in Transition Metal Species from a Computational Perspective. Chemical Reviews, 2010, 110, 749-823.	47.7	959
2	Câ^'F and Câ^'H Bond Activation of Fluorobenzenes and Fluoropyridines at Transition Metal Centers: How Fluorine Tips the Scales. Accounts of Chemical Research, 2011, 44, 333-348.	15.6	430
3	Transition Metal Polyhydrides:  From Qualitative Ideas to Reliable Computational Studies. Chemical Reviews, 2000, 100, 601-636.	47.7	341
4	Synthesis of Benzocyclobutenes by Palladium-Catalyzed Câ^'H Activation of Methyl Groups: Method and Mechanistic Study. Journal of the American Chemical Society, 2008, 130, 15157-15166.	13.7	290
5	Linear-Selective Hydroarylation of Unactivated Terminal and Internal Olefins with Trifluoromethyl-Substituted Arenes. Journal of the American Chemical Society, 2014, 136, 13098-13101.	13.7	263
6	Computed Ligand Electronic Parameters from Quantum Chemistry and Their Relation to Tolman Parameters, Lever Parameters, and Hammett Constants. Inorganic Chemistry, 2001, 40, 5806-5811.	4.0	233
7	Intramolecular Palladium-Catalyzed Alkane Câ^'H Arylation from Aryl Chlorides. Journal of the American Chemical Society, 2010, 132, 10706-10716.	13.7	218
8	Imidazolium Carboxylates as Versatile and Selective N-Heterocyclic Carbene Transfer Agents: Synthesis, Mechanism, and Applications. Journal of the American Chemical Society, 2007, 129, 12834-12846.	13.7	213
9	Understanding d0-Olefin Metathesis Catalysts:Â Which Metal, Which Ligands?. Journal of the American Chemical Society, 2007, 129, 8207-8216.	13.7	210
10	Palladium atalyzed βâ€Arylation of Carboxylic Esters. Angewandte Chemie - International Edition, 2010, 49, 7261-7265.	13.8	190
11	An Anion-Dependent Switch in Selectivity Results from a Change of Câ^'H Activation Mechanism in the Reaction of an Imidazolium Salt with IrH5(PPh3)2. Journal of the American Chemical Society, 2005, 127, 16299-16311.	13.7	172
12	Exceptional Sensitivity of Metalâ^'Aryl Bond Energies to <i>ortho</i> -Fluorine Substituents: Influence of the Metal, the Coordination Sphere, and the Spectator Ligands on Mâ^'C/Hâ^'C Bond Energy Correlations. Journal of the American Chemical Society, 2009, 131, 7817-7827.	13.7	172
13	Computational structure–activity relationships in H2storage: how placement of N atoms affects release temperatures in organic liquid storage materials. Chemical Communications, 2007, , 2231-2233.	4.1	163
14	d0Re-Based Olefin Metathesis Catalysts, Re(â‹®CR)(CHR)(X)(Y):Â The Key Role of X and Y Ligands for Efficient Active Sites. Journal of the American Chemical Society, 2005, 127, 14015-14025.	13.7	158
15	Mechanism of Homogeneous Iridium-Catalyzed Alkylation of Amines with Alcohols from a DFT Study. Organometallics, 2008, 27, 2529-2535.	2.3	149
16	Ruthenium Bis(Ïfâ€BH) Aminoborane Complexes from Dehydrogenation of Amine–Boranes: Trapping of H ₂ BNH ₂ . Angewandte Chemie - International Edition, 2010, 49, 918-920.	13.8	145
17	Agostic Interactions from a Computational Perspective: One Name, Many Interpretations. Structure and Bonding, 2004, , 1-36.	1.0	132
18	Ligand-controlled β-selective C(sp3)–H arylation of N-Boc-piperidines. Chemical Science, 2013, 4, 2241.	7.4	122

#	Article	IF	CITATIONS
19	Energetics of Câ^'H Bond Activation of Fluorinated Aromatic Hydrocarbons Using a [Tp′Rh(CNneopentyl)] Complex. Journal of the American Chemical Society, 2009, 131, 13464-13473.	13.7	117
20	Reaction of molecular hydrogen (H2) with chlorohydridoiridium phosphines IrHCl2P2 (P = PPr-iso3 or) Tj ETQq0 Journal of the American Chemical Society, 1993, 115, 7300-7312.	0 0 rgBT /0 13.7	Overlock 101 116
21	Hydride Is Not a Spectator Ligand in the Formation of Hydrido Vinylidene from Terminal Alkyne and Ruthenium and Osmium Hydrides:Â Mechanistic Differences. Organometallics, 1998, 17, 3091-3100.	2.3	111
22	A Terminal Borylene Ruthenium Complex: From Bâ^'H Activation to Reversible Hydrogen Release. Journal of the American Chemical Society, 2008, 130, 12878-12879.	13.7	108
23	Computational and Experimental Test of Steric Influence on Agostic Interactions:Â A Homologous Series for Ir(III). Journal of the American Chemical Society, 1999, 121, 97-106.	13.7	105
24	Biscarbeneâ^'Ruthenium Complexes in Catalysis: Novel Stereoselective Synthesis of (1E,3E)-1,4-Disubstituted-1,3-dienes via Head-to-Head Coupling of Terminal Alkynes and Addition of Carboxylic Acids. Journal of the American Chemical Society, 2003, 125, 11964-11975.	13.7	99
25	A Weak Donor, Planar Chelating Bitriazole N-Heterocyclic Carbene Ligand for Ruthenium(II), Palladium(II), and Rhodium. Organometallics, 2008, 27, 2128-2136.	2.3	98
26	Dynamics of Silica-Supported Catalysts Determined by Combining Solid-State NMR Spectroscopy and DFT Calculations. Journal of the American Chemical Society, 2008, 130, 5886-5900.	13.7	98
27	Aliphatic versus Aromatic Câ^'H Activation in the Formation of Abnormal Carbenes with Iridium:  A Combined Experimental and Theoretical Study. Organometallics, 2007, 26, 5304-5314.	2.3	94
28	Mesitylborane as a Bis(σ-Bâ^'H) Ligand: An Unprecedented Bonding Mode to a Metal Center. Journal of the American Chemical Society, 2007, 129, 8704-8705.	13.7	91
29	Inertness of the Arylâ^'F Bond toward Oxidative Addition to Osmium and Rhodium Complexes: Thermodynamic or Kinetic Origin?. Journal of the American Chemical Society, 1998, 120, 12634-12640. Bond energy M–C/H–C correlations: dual theoretical and experimental approach to the sensitivity of	13.7	90
30	M–C bond strength to substituentsElectronic supplementary information (ESI) available: methods of calculation; Fig. S1: Comparison of calculated and experimental C–H bond dissociation energies for organic molecules; Table S1, comparison of calculated and experimental CO-stretching frequencies; Table S2 total energies BDE for Re–C and H–C: Table S3 NPA charges o(C) and o(aryl) for the organic	4.1	89
31	fragments C6H6–. Chemical Communications, 2003, , 490-491. Proton Transfer in Aminocyclopentadienyl Ruthenium Hydride Complexes. Organometallics, 1999, 18, 3981-3990.	2.3	88
32	Î ² -H Transfer from the Metallacyclobutane: A Key Step in the Deactivation and Byproduct Formation for the Well-Defined Silica-Supported Rhenium Alkylidene Alkene Metathesis Catalyst. Journal of the American Chemical Society, 2008, 130, 6288-6297.	13.7	88
33	Coordinated carbenes from electron-rich olefins on RuHCl(PPr3i)2. New Journal of Chemistry, 2000, 24, 9-26.	2.8	87
34	Defluorination of Perfluoropropene Using Cp*2ZrH2and Cp*2ZrHF:Â A Mechanism Investigation from a Joint Experimentalâ^'Theoretical Perspective. Journal of the American Chemical Society, 2004, 126, 5647-5653.	13.7	85
35	Outer sphere anion participation can modify the mechanism for conformer interconversion in Pd pincer complexes. Dalton Transactions, 2003, , 831-838.	3.3	84
36	Efficient Pd ⁰ -Catalyzed Asymmetric Activation of Primary and Secondary C–H Bonds Enabled by Modular Binepine Ligands and Carbonate Bases. ACS Catalysis, 2015, 5, 4300-4308.	11.2	84

#	Article	IF	CITATIONS
37	Counter-ion effects switch ligand binding from C-2 to C-5 in kinetic carbenes formed from an imidazolium salt and IrH5(PPh3)2. Chemical Communications, 2002, , 2580-2581.	4.1	82
38	Double Geminal Câ^'H Activation and Reversible α-Elimination in 2-Aminopyridine Iridium(III) Complexes:Â The Role of Hydrides and Solvent in Flattening the Free Energy Surface. Journal of the American Chemical Society, 2004, 126, 8795-8804.	13.7	77
39	Ruthenium Assisted Reversible Proton Transfer from an Aromatic Carbon to a Hydride. Journal of the American Chemical Society, 2000, 122, 6777-6778.	13.7	75
40	Validation of the Mâ^'C/Hâ^'C Bond Enthalpy Relationship through Application of Density Functional Theory. Journal of the American Chemical Society, 2006, 128, 8350-8357.	13.7	73
41	On the Mechanism of the Palladium atalyzed βâ€Arylation of Ester Enolates. Chemistry - A European Journal, 2012, 18, 1932-1944.	3.3	72
42	Ruthenium, Rhodium, and Iridium Bis(σ-Bâ^'H) Diisopropylaminoborane Complexes. Organometallics, 2010, 29, 5591-5595.	2.3	71
43	Selective Ion Pairing in [Ir(bipy)H2(PRPh2)2]A (A = PF6, BF4, CF3SO3, BPh4, R = Me, Ph):Â Experimental Identification and Theoretical Understanding. Organometallics, 2001, 20, 2367-2373.	2.3	70
44	lon pairing effects in intramolecular heterolytic H2 activation in an Ir(iii) complex: a combined theoretical/experimental study. New Journal of Chemistry, 2003, 27, 80-87.	2.8	69
45	Interionic Structure of Ion Pairs and Ion Quadruples of Half-Sandwich Ruthenium(II) Salts Bearing α-Diimine Ligands. Organometallics, 2007, 26, 3930-3946.	2.3	69
46	Heterolytic dihydrogen activation in an iridium complex with a pendant basic group. Chemical Communications, 1999, , 297-298.	4.1	68
47	Pendant Arm Functionalized Benzamidinate Titanium Imido Compounds:  Experimental and Computational Studies of Their Reactions with CO2. Organometallics, 2005, 24, 2347-2367.	2.3	65
48	New ligand platforms for developing the chemistry of the Tiĩ€N–NR2 functional group and the insertion of alkynes into the N–N bond of a Tiĩ€N–NPh2 ligand. Chemical Communications, 2007, , 4937.	4.1	65
49	Phosphinoborane and Sulfidoborohydride as Chelating Ligands in Polyhydride Ruthenium Complexes: Agostic Ïfâ€Borane versus Dihydroborate Coordination. Angewandte Chemie - International Edition, 2009, 48, 2964-2968.	13.8	64
50	AlMe3and ZnMe2Adducts of a Titanium Imido Methyl Cation:Â A Combined Crystallographic, Spectroscopic, and DFT Study. Journal of the American Chemical Society, 2006, 128, 15005-15018.	13.7	62
51	Understanding Structural and Dynamic Properties of Well-Defined Rhenium-Based Olefin Metathesis Catalysts, Re(â‹®CR)(CHR)(X)(Y), from DFT and QM/MM Calculations. Organometallics, 2005, 24, 1586-1597.	2.3	59
52	DFT study of the mechanism of benzocyclobutene formation by palladium-catalysed C(sp3)–H activation: role of the nature of the base and the phosphine. Dalton Transactions, 2010, 39, 10528.	3.3	59
53	Well-defined imidotitanium alkyl cations: agostic interactions, migratory insertion vs.[2+2] cycloaddition, and the first structurally authenticated AlMe3 adduct of any transition metal alkyl cation. Chemical Communications, 2005, , 3313.	4.1	58
54	DFT calculations of d0M(NR)(CHtBu)(X)(Y) (M = Mo, W; R = CPh3, 2,6-iPr–C6H3; X and Y = CH2tBu, OtBu,) Tj	ETQq0 0 3.3	0 rgBT /Overl

Transactions, 2006, , 3077-3087.

#	Article	IF	CITATIONS
55	Reactions of cyclopentadienyl-amidinate titanium imido compounds with CO2: cycloaddition-extrusion vs. cycloaddition-insertion. Dalton Transactions, 2009, , 5960.	3.3	58
56	Selective mono N-methylation of anilines with methanol catalyzed by rhenium complexes: An experimental and theoretical study. Journal of Catalysis, 2018, 366, 300-309.	6.2	58
57	Syntheses, Reactivity and DFT Studies of Groupâ€2 and Group 12 Metal Complexes of Tris(pyrazolyl)methanides Featuring "Free―Pyramidal Carbanions. Chemistry - A European Journal, 2008, 14, 5918-5934.	3.3	57
58	Experimental and DFT Studies of Cationic Imido Titanium Alkyls:Â Agostic Interactions and Câ^'H Bond and Solvent Activation Reactions of Isolobal Analogues of Group 4 Metallocenium Cations. Organometallics, 2006, 25, 2806-2825.	2.3	55
59	Importance of palladium–carbon bond energies in direct arylation of polyfluorinated benzenes. Dalton Transactions, 2010, 39, 10510.	3.3	54
60	cis–trans Isomerisation of CpRe(CO)2(H)(ArF) (ArF= C6FnH5â^'n; n = 0–5) is the rate determining step in C–H activation of fluoroarenes: a DFT study. Dalton Transactions, 2003, , 4065-4074.	3.3	53
61	Mâ•NαCycloaddition and Nαâ^'NβInsertion in the Reactions of Titanium Hydrazido Compounds with Alkynes: A Combined Experimental and Computational Study. Journal of the American Chemical Society, 2010, 132, 10484-10497.	13.7	53
62	Mild Decarboxylative Câ^'H Alkylation: Computational Insights for Solventâ€Robust Ruthenium(II) Domino Manifold. Chemistry - A European Journal, 2017, 23, 17449-17453.	3.3	53
63	PGSE and NOE NMR Evidence for Higher Order Aggregation in Some Cationic Ruthenium Complexes in Both Protic and Aprotic Solvents. Inorganic Chemistry, 2003, 42, 5465-5467.	4.0	52
64	Agostic interaction and intramolecular proton transfer from the protonation of dihydrogen ortho metalated ruthenium complexes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6945-6950.	7.1	52
65	Reaction Site Diversity in the Reactions of Titanium Hydrazides with Organic Nitriles, Isonitriles and Isocyanates: TiN _α Cycloaddition, TiN _α Insertion and N _α N _β Bond Cleavage. Chemistry - A European Journal, 2011, 17, 265-285.	3.3	52
66	Carbene Complexes from Olefins, Using RuHCl(PiPr3)2. Influence of the Olefin Substituent. Journal of the American Chemical Society, 1998, 120, 9388-9389.	13.7	49
67	Ionâ€Pairing in Organometallic Chemistry: Structure and Influence on Proton Transfer from a Computational Perspective. European Journal of Inorganic Chemistry, 2009, 2009, 2319-2328.	2.0	49
68	Dimethylaminoborane (H ₂ BNMe ₂) Coordination to Late Transition Metal Centers: Snapshots of the B–H Oxidative Addition Process Inorganic Chemistry, 2011, 50, 11039-11045.	4.0	49
69	Ortho-Metalated Ruthenium Hydrido Dihydrogen Complexes:Â Dynamics, Exchange Couplings, and Reactivity. Organometallics, 2004, 23, 1424-1433.	2.3	48
70	Mechanistic Study of the Selectivity of Olefin versus Cyclobutene Formation by Palladium(0)-Catalyzed Intramolecular C(sp ³)–H Activation. Journal of Organic Chemistry, 2014, 79, 11903-11910.	3.2	48
71	Dynamics on an ab Initio Surface for Calculating JHH NMR Exchange Coupling. The Case of OsH3X(PH3)2. Journal of the American Chemical Society, 1995, 117, 1797-1799.	13.7	46
72	BH, CH, and BC Bond Activation: The Role of Two Adjacent Agostic Interactions. Angewandte Chemie - International Edition, 2014, 53, 7569-7573.	13.8	46

#	Article	IF	CITATIONS
73	Quantum Exchange Coupling:Â A Hypersensitive Indicator of Weak Interactions. Journal of the American Chemical Society, 1997, 119, 10153-10169.	13.7	42
74	Mechanistic investigation of vinylic carbon–fluorine bond activation of perfluorinated cycloalkenes using Cp*2ZrH2 and Cp*2ZrHF. Journal of Fluorine Chemistry, 2010, 131, 1122-1132.	1.7	42
75	Titanium Hydrazides Supported by Diamide-Amine and Related Ligands: A Combined Experimental and DFT Study. Organometallics, 2008, 27, 6479-6494.	2.3	41
76	Reactions of Cyclopentadienylâ^'Amidinate Titanium Hydrazides with CO ₂ , CS ₂ , and Isocyanates: Tiâ•N _α Cycloaddition, Cycloadditionâ^'Insertion, and Cycloadditionâ^'NNR ₂ Group Transfer Reactions. Organometallics, 2011, 30, 1182-1201.	2.3	41
77	Aggregation in solution of neutral half-sandwich Ru(ii) precatalysts for transfer hydrogenation. New Journal of Chemistry, 2005, 29, 430.	2.8	40
78	Structural variants of tetranuclear L4Cu4X4. Influence of L on the coordination mode of copper(I). Inorganic Chemistry, 1992, 31, 5389-5394.	4.0	39
79	Interplay of Weak Interactions:Â An Iridium(III) System with an Agostictert-Butyl but a Nonagostic Isopropyl Group. Organometallics, 2002, 21, 575-580.	2.3	39
80	Ruthenium Agostic (Phosphinoaryl)borane Complexes: Multinuclear Solid-State and Solution NMR, X-ray, and DFT Studies. Journal of the American Chemical Society, 2011, 133, 17232-17238.	13.7	39
81	Hydrogenation of Carbonyl Derivatives with a Wellâ€Đefined Rhenium Precatalyst. ChemCatChem, 2017, 9, 80-83.	3.7	39
82	Roomâ€Temperature Functionalization of N ₂ to Borylamine at a Molybdenum Complex. Angewandte Chemie - International Edition, 2018, 57, 12865-12868.	13.8	39
83	Cycloaddition reactions of transition metal hydrazides with alkynes and heteroalkynes: coupling of Tiî€NNPh2 with PhCCMe, PhCCH, MeCN and tBuCP. Chemical Communications, 2008, , 5101.	4.1	38
84	Single and double substrate insertion into the Tiî€N _α bonds of terminal titanium hydrazides. Chemical Communications, 2010, 46, 85-87.	4.1	37
85	Reactions of Neutral and Cationic Diamide-Supported Imido Complexes with CO2 and Other Heterocumulenes:  Issues of Site Selectivity. Organometallics, 2005, 24, 2368-2385.	2.3	35
86	Carbonylâ<̄carbonyl interactions in first-row transition metal complexes. CrystEngComm, 2006, 8, 563-570.	2.6	35
87	Synthesis and structure of "16-electron―rhodium(iii) catalysts for transfer hydrogenation of a cyclic imine: mechanistic implications. Chemical Communications, 2009, , 6801.	4.1	35
88	Synthesis, structure, and reductive elimination in the series Tp′Rh(PR3)(ArF)H; Determination of rhodium–carbon bond energies of fluoroaryl substituents. Dalton Transactions, 2010, 39, 10495.	3.3	35
89	Synthesis, Reactivity, and Computational Studies of the Cationic Tungsten Methyl Complex [W(NPh)(N2Npy)Me]+and Related Compounds (N2Npy= MeC(2-C5H4N)(CH2NSiMe3)2). Organometallics, 2004, 23, 4444-4461.	2.3	33
90	Structural and dynamic properties of propane coordinated to TpRh(CNR) from a confrontation between theory and experiment. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6939-6944.	7.1	33

#	Article	IF	CITATIONS
91	Si–H and Si–Cl bond activation reactions of titanium hydrazides with silanes and subsequent Ti–H/E–H (E = Si or H) σ-bond metathesis. Chemical Communications, 2011, 47, 3147.	4.1	32
92	Site selectivity and reversibility in the reactions of titanium hydrazides with Si–H, Si–X, C–X and H+ reagents: Tiî€Nα 1,2-silane addition, Nβ alkylation, Nα protonation and σ-bond metathesis. Dalton Transactions, 2012, 41, 2277.	3.3	32
93	Monosubstituted Borane Ruthenium Complexes RuH ₂ (Î+ ² :Î+ ² -H ₂ BR)(PR′ ₃) ₂ : A General Approach to the Geminal Bis(Ïf-B–H) Coordination Mode. Organometallics, 2013, 32, 4868-4877.	2.3	32
94	Regiospecificity in Ligand-Free Pd-Catalyzed C–H Arylation of Indoles: LiHMDS as Base and Transient Directing Group. ACS Catalysis, 2020, 10, 2713-2719.	11.2	32
95	Synthesis and Ethylene Polymerization Capability of Metallocene-like Imido Titanium Dialkyl Compounds and Their Reactions with AliBu3. Organometallics, 2006, 25, 5549-5565.	2.3	31
96	Deciphering Selectivity in Organic Reactions: A Multifaceted Problem. Accounts of Chemical Research, 2016, 49, 1070-1078.	15.6	31
97	Synthesis, Bonding and Reactivity of a Terminal Titanium Alkylidene Hydrazido Compound. Chemistry - A European Journal, 2013, 19, 4198-4216.	3.3	30
98	Synthesis, DFT Studies, and Reactions of Scandium and Yttrium Dialkyl Cations Containing Neutral <i>fac</i> -N ₃ and <i>fac</i> -S ₃ Donor Ligands. Organometallics, 2008, 27, 3458-3473.	2.3	29
99	An extremely low barrier to rotation of dihydrogen in the iridium complex IrClH2(.eta.2-H2)(PiPr3)2. Journal of the American Chemical Society, 1993, 115, 11056-11057.	13.7	28
100	Tiâ•NR vs Tiâ^'R′ Functional Group Selectivity in Titanium Imido Alkyl Cations from an Experimental Perspective. Organometallics, 2008, 27, 6096-6110.	2.3	28
101	Controlling the Selectivity of C–H Activation in Pyridinium Triazolylidene Iridium Complexes: Mechanistic Details and Influence of Remote Substituents. Organometallics, 2015, 34, 858-869.	2.3	28
102	Isomeric Hydrido/Vinylidene, MH(halide)(CCH2)L2, and Ethylidyne, M(halide)(Câ^'CH3)L2(M = Os, Ru; L =) Tj ETQ	q0 <u>0</u> 30 rgB	3T /Overlock 27
103	How hydrogen bonding affects ligand binding and fluxionality in transition metal complexes: a DFT study on interligand hydrogen bonds involving HF and H2O. New Journal of Chemistry, 2001, 25, 66-72.	2.8	27
104	η ⁶ â€Areneâ€Zirconiumâ€PNPâ€Pincer Complexes: Mechanism of Their Hydrogenolytic Formation and Their Reactivity as Zirconium(II) Synthons. Chemistry - A European Journal, 2016, 22, 9283-9292.	3.3	27
105	New Sandwich and Half-Sandwich Titanium Hydrazido Compounds. Organometallics, 2011, 30, 2295-2307.	2.3	24
106	Ta-Catalyzed Hydroaminoalkylation of Alkenes: Insights into Ligand-Modified Reactivity Using DFT. Organometallics, 2018, 37, 4387-4394.	2.3	24
107	New Scandium Borylimido Chemistry: Synthesis, Bonding, and Reactivity. Journal of the American Chemical Society, 2017, 139, 11165-11183.	13.7	23
109	Hydride Ligands Make the Difference: Density Functional Study of the Mechanism of the Murai Reaction Catalyzed by		2.2

108(Reaction Catalyzed by
[Ru(H)₂(H₂)<sub>2</sub)₂)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</sub)<sub>2</s

#	Article	IF	CITATIONS
109	Domino Pd ⁰ â€Catalyzed C(sp ³)–H Arylation/Electrocyclic Reactions via Benzazetidine Intermediates. Angewandte Chemie - International Edition, 2018, 57, 12131-12135.	13.8	22
110	Synthesis and Reactions of a Cyclopentadienyl-Amidinate Titanium <i>tert-</i> Butoxyimido Compound. Organometallics, 2013, 32, 7520-7539.	2.3	21
111	Reactions of Titanium Hydrazides with Silanes and Boranes: N–N Bond Cleavage and N Atom Functionalization. Journal of the American Chemical Society, 2015, 137, 10140-10143.	13.7	21
112	Influence of Ancillary Ligands on the Kinetics and the Thermodynamics of H2Addition to IrXH2(PR3)2(X) Tj ETQq0 Journal of Physical Chemistry A, 1998, 102, 3592-3598.	0 0 rgBT 2.5	Overlock 10 20
113	From Inelastic Neutron Scattering to Structural Information. A Two-Dimensional Parametrized Model To Study Metalâ^'(H2) Interaction. Journal of the American Chemical Society, 1999, 121, 8855-8863.	13.7	20
114	Stereochemical Nonrigidity of a Chiral Rhodium Boryl Hydride Complex: A σ-Borane Complex as Transition State for Isomerization. Journal of the American Chemical Society, 2008, 130, 4375-4385.	13.7	20
115	Diels–Alder reaction of vinylene carbonate and 2,5-dimethylfuran: kinetic vs. thermodynamic control. New Journal of Chemistry, 2010, 34, 517.	2.8	20
116	Titanium alkoxyimido (Tiî€N–OR) complexes: reductive N–O bond cleavage at the boundary between hydrazide and peroxide ligands. Chemical Communications, 2011, 47, 4926.	4.1	19
117	A Highly Effective Ruthenium System for the Catalyzed Dehydrogenative Cyclization of Amine–Boranes to Cyclic Boranes under Mild Conditions. Chemistry - A European Journal, 2015, 21, 13080-13090.	3.3	19
118	Aerobic and Ligand-Free Manganese-Catalyzed Homocoupling of Arenes or Aryl Halides via in Situ Formation of Aryllithiums. Journal of Organic Chemistry, 2019, 84, 4413-4420.	3.2	19
119	Fate of CH2CHE (E = H, OMe) in the Presence of Unsaturated Ru(X)(H)L2q+(X = Cl,q= 0; X = CO,q= 1):Â Highly Sensitive to X and E. Organometallics, 2000, 19, 2291-2298.	2.3	17
120	A NMR, X-ray, and DFT combined study on the regio-chemistry of nucleophilic addition to platinum(II) coordinated terminal olefins. Journal of Organometallic Chemistry, 2008, 693, 2819-2827.	1.8	17
121	Self-Aggregation Tendency of All Species Involved in the Catalytic Cycle of Bifunctional Transfer Hydrogenation. Organometallics, 2009, 28, 960-967.	2.3	17
122	Small molecule activation. Dalton Transactions, 2016, 45, 14419-14420.	3.3	17
123	18-Electron Os(X)(CHR)(Cl)(CO)L2 (X=H, Cl): not octahedral and metastable?. New Journal of Chemistry, 1999, 23, 495-498.	2.8	16
124	Synthesis and reactivity of the imidotungsten methyl cation [W(N2Npy)(NPh)Me]+: CO2adds to the Wĩ€NPh bond and does not insert into the W–Me bond. Chemical Communications, 2002, , 2618-2619.	4.1	15
125	Titanium <i>tert</i> -Butoxyimido Compounds. Inorganic Chemistry, 2011, 50, 12155-12171.	4.0	15
126	Roomâ€Temperature Functionalization of N ₂ to Borylamine at a Molybdenum Complex. Angewandte Chemie, 2018, 130, 13047-13050.	2.0	15

#	Article	IF	CITATIONS
127	A mechanochemical approach to access the proline–proline diketopiperazine framework. Beilstein Journal of Organic Chemistry, 2017, 13, 2169-2178.	2.2	14
128	Lâ€~ = CO vs Cl- Transposition:  Remarkable Consequences for the Product of (Lâ€~)â^'Ru(L)2â^'(H) and Vinyl Ether. Organometallics, 1999, 18, 5441-5443.	2.3	13
129	Dehydrogenative coupling of 4-substituted pyridines mediated by a zirconium(ii) synthon: reaction pathways and dead ends. Chemical Science, 2018, 9, 5223-5232.	7.4	13
130	B–C Bond Cleavage and Ru–C Bond Formation from a Phosphinoborane: Synthesis of a Bis-σ Borane Aryl-Ruthenium Complex. Organometallics, 2014, 33, 7157-7163.	2.3	12
131	New Titanium Borylimido Compounds: Synthesis, Structure, and Bonding. Inorganic Chemistry, 2017, 56, 10794-10814.	4.0	12
132	Stepwise Functionalization of N ₂ at Mo: Nitrido to Imido to Amido – Factors Favoring Amine Elimination from the Amido Complex. European Journal of Inorganic Chemistry, 2020, 2020, 1499-1505.	2.0	12
133	Nâ€Heterocyclic Carbene Iron Silyl Hydride Complexes. Israel Journal of Chemistry, 2017, 57, 1216-1221.	2.3	11
134	Selectivity in C–Cl bond activation of dichloroarenes by photogenerated Cp*Re(CO)2: combined experimental and DFT studies. New Journal of Chemistry, 2005, 29, 226-231.	2.8	10
135	Domino Pd ⁰ â€Catalyzed C(sp ³)–H Arylation/Electrocyclic Reactions via Benzazetidine Intermediates. Angewandte Chemie, 2018, 130, 12307-12311.	2.0	10
136	Azaphilic versus Carbophilic Coupling at CN Bonds: Key Steps in Titaniumâ€Assisted Multicomponent Reactions. Chemistry - A European Journal, 2015, 21, 18730-18738.	3.3	9
137	Conformational preferences of bis(acetonitrile)tetrachloro molybdenum(IV) and tungsten(IV). Crystal structure of WCl4(CH3CN)2 and DFT calculations. New Journal of Chemistry, 1999, 23, 165-172.	2.8	8
138	Is the Allylpalladium Structure Altered between Solid and Solutions?. Journal of the American Chemical Society, 2004, 126, 9079-9084.	13.7	7
139	Tiâ•NR vs Tiâ^'R′ Functional Group Selectivity in Titanium Imido Alkyl Cations from a DFT Perspective. Organometallics, 2008, 27, 6111-6122.	2.3	7
140	Reactions of Titanium Imides and Hydrazides with Boranes. Organometallics, 2017, 36, 3329-3342.	2.3	7
141	Efficient alkene hydrosilation with bis(8-quinolyl)phosphine (NPN) nickel catalysts. The dominant role of silyl-over hydrido-nickel catalytic intermediates. Chemical Science, 2020, 11, 5043-5051.	7.4	7
142	Supramolecular Chirogenesis in Bis-Porphyrin: Crystallographic Structure and CD Spectra for a Complex with a Chiral Guanidine Derivative. Symmetry, 2021, 13, 275.	2.2	7
143	Hydrides and Hydrogen Bonding. , 2001, , 75-88.		5
144	Supramolecular chirogenesis in zinc porphyrins: Complexation with enantiopure thiourea derivatives, binding studies and chirality transfer mechanism. Journal of Porphyrins and Phthalocyanines, 2020, 24, 840-849.	0.8	5

#	Article	IF	CITATIONS
145	Benchmarking computational methods and influence of guest conformation on chirogenesis in zinc porphyrin complexes. Physical Chemistry Chemical Physics, 2020, 22, 11025-11037.	2.8	5
146	Isomerization of Double and Triple C-C Bonds at a Metal Center. Catalysis By Metal Complexes, 2002, , 137-160.	0.6	4
147	Structure and Reactivity oftrans-Bis[2-(2-chloroethyl)pyridine]palladium Chloride (1). A Study on the Elimination Reaction of Land 2-(2-Chloroethyl)pyridine Induced by Quinuclidine in Acetonitrile. Journal of Organic Chemistry, 2005, 70, 10688-10692.	3.2	4
148	Synthesis of a ruthenium bis(diisopropylamino(isocyano)borane) complex from the activation of an amino(cyano)borane. Dalton Transactions, 2013, 42, 776-781.	3.3	4
149	Isolation and structural characterization of a titanacyclopropane as key intermediate in the double aryl Grignard addition to 2-(arylethynyl)pyridine derivatives. Chemical Communications, 2018, 54, 2228-2231.	4.1	4
150	Synergy between experiment and theory. Dalton Transactions, 2014, 43, 11092.	3.3	3
151	Chirogenesis in Zinc Porphyrins: Theoretical Evaluation of Electronic Transitions, Controlling Structural Factors and Axial Ligation. ChemPhysChem, 2021, 22, 1817-1833.	2.1	3
152	A Career in Catalysis: Odile Eisenstein. ACS Catalysis, 2019, 9, 10375-10388.	11.2	2
153	Agostic Interactions from a Computational Perspective: One Name, Many Interpretations. ChemInform, 2005, 36, no.	0.0	1
154	Biscarbene—Ruthenium Complexes in Catalysis: Novel Stereoselective Synthesis of (1E,3E)-1,4-Disubstituted-1,3-dienes via Head-to-Head Coupling of Terminal Alkynes and Addition of Carboxylic Acids ChemInform, 2004, 35, no.	0.0	0
155	Impact of the Alkali Metal on the Structural and Dynamic Properties of the Anionic Pentahydride Ruthenium Complexes [M(THF)x][RuH5(PCy3)2] (M = Li, Na, K). Organometallics, 2021, 40, 3024-3032.	2.3	Ο