List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1596524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comprehensive analysis of circulating miRNA expression profiles in insulin resistance and type 2 diabetes in Qatari population. International Journal of Transgender Health, 2022, 15, 191-202.	2.3	0
2	PAK4 and NAMPT as Novel Therapeutic Targets in Diffuse Large B-Cell Lymphoma, Follicular Lymphoma, and Mantle Cell Lymphoma. Cancers, 2022, 14, 160.	3.7	8
3	Inhibitor of the Nuclear Transport Protein XPO1 Enhances the Anticancer Efficacy of KRAS G12C Inhibitors in Preclinical Models of KRAS G12C–Mutant Cancers. Cancer Research Communications, 2022, 2, 342-352.	1.7	12
4	Abstract 5315: Anti-tumor activity of KRASG12C inhibitors is enhanced when combined with Cdc42 effector p21-activated kinase 4 targeting agents. Cancer Research, 2022, 82, 5315-5315.	0.9	0
5	The nuclear export protein XPO1 — from biology to targeted therapy. Nature Reviews Clinical Oncology, 2021, 18, 152-169.	27.6	114
6	Selinexor in Combination with R-CHOP for Frontline Treatment of Non-Hodgkin Lymphoma: Results of a Phase I Study. Clinical Cancer Research, 2021, 27, 3307-3316.	7.0	17
7	Gastrointestinal stromal tumor: a review of current and emerging therapies. Cancer and Metastasis Reviews, 2021, 40, 625-641.	5.9	39
8	Exosomal microRNA in Pancreatic Cancer Diagnosis, Prognosis, and Treatment: From Bench to Bedside. Cancers, 2021, 13, 2777.	3.7	18
9	PAK4-NAMPT Dual Inhibition Sensitizes Pancreatic Neuroendocrine Tumors to Everolimus. Molecular Cancer Therapeutics, 2021, 20, 1836-1845.	4.1	14
10	Non-Coding RNAs in Pancreatic Cancer Diagnostics and Therapy: Focus on IncRNAs, circRNAs, and piRNAs. Cancers, 2021, 13, 4161.	3.7	14
11	Dual Targeting PAK4 and NAMPT As a Novel Therapeutic Approach for Aggressive Non-Hodgkin's Lymphoma. Blood, 2021, 138, 683-683.	1.4	0
12	Targeting XPO1 and PAK4 in 8505C Anaplastic Thyroid Cancer Cells: Putative Implications for Overcoming Lenvatinib Therapy Resistance. International Journal of Molecular Sciences, 2020, 21, 237.	4.1	23
13	Preclinical Assessment with Clinical Validation of Selinexor with Gemcitabine and Nab-Paclitaxel for the Treatment of Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2020, 26, 1338-1348.	7.0	28
14	Calcium Release-Activated Calcium (CRAC) Channel Inhibition Suppresses Pancreatic Ductal Adenocarcinoma Cell Proliferation and Patient-Derived Tumor Growth. Cancers, 2020, 12, 750.	3.7	27
15	Selinexor in Combination with R-CHOP for Frontline Treatment of Non-Hodgkin Lymphoma: Results of a Phase 1b Study. Blood, 2020, 136, 11-12.	1.4	2
16	DNA-Methylation-Caused Downregulation of miR-30 Contributes to the High Expression of XPO1 and the Aggressive Growth of Tumors in Pancreatic Ductal Adenocarcinoma. Cancers, 2019, 11, 1101.	3.7	9
17	Pre-clinical anti-tumor activity of Bruton's Tyrosine Kinase inhibitor in Hodgkin's Lymphoma cellular and subcutaneous tumor model. Heliyon, 2019, 5, e02290.	3.2	8
18	DNAJB3 attenuates metabolic stress and promotes glucose uptake by eliciting Glut4 translocation. Scientific Reports, 2019, 9, 4772.	3.3	12

#	Article	lF	CITATIONS
19	Evaluation of cationic channel TRPV2 as a novel biomarker and therapeutic target in Leukemia-Implications concerning the resolution of pulmonary inflammation. Scientific Reports, 2019, 9, 1554.	3.3	18
20	PAK4-NAMPT Dual Inhibition as a Novel Strategy for Therapy Resistant Pancreatic Neuroendocrine Tumors. Cancers, 2019, 11, 1902.	3.7	22
21	Pharmacotherapeutic strategies for treating pancreatic cancer: advances and challenges. Expert Opinion on Pharmacotherapy, 2019, 20, 535-546.	1.8	22
22	Obesityâ€induced MBD 2_v2 expression promotes tumorâ€initiating tripleâ€negative breast cancer stem cells. Molecular Oncology, 2019, 13, 894-908.	4.6	24
23	Targeting Rho GTPase effector p21 activated kinase 4 (PAK4) suppresses p-Bad-microRNA drug resistance axis leading to inhibition of pancreatic ductal adenocarcinoma proliferation. Small GTPases, 2019, 10, 367-377.	1.6	26
24	Dysregulated expression of SKP2 and its role in hematological malignancies. Leukemia and Lymphoma, 2018, 59, 1051-1063.	1.3	16
25	Comparison of 10 and 14 days of triple therapy versus 10 days of sequential therapy for Helicobacter pylori eradication: A prospective randomized study. Turkish Journal of Gastroenterology, 2018, 29, 549-554.	1.1	7
26	Nuclear Export Inhibition for Pancreatic Cancer Therapy. Cancers, 2018, 10, 138.	3.7	17
27	Db/db Obese Mice Exhibit Enhanced Phosphorylation of p38, ERK1/2 and AKT in the Kidney. FASEB Journal, 2018, 32, .	0.5	0
28	Novel p21-Activated Kinase 4 (PAK4) Allosteric Modulators Overcome Drug Resistance and Stemness in Pancreatic Ductal Adenocarcinoma. Molecular Cancer Therapeutics, 2017, 16, 76-87.	4.1	69
29	Treating triple negative breast cancer cells with erlotinib plus a select antioxidant overcomes drug resistance by targeting cancer cell heterogeneity. Scientific Reports, 2017, 7, 44125.	3.3	42
30	Targeting acute myeloid leukemia stem cell signaling by natural products. Molecular Cancer, 2017, 16, 13.	19.2	104
31	Potential therapeutic targets of Guggulsterone in cancer. Nutrition and Metabolism, 2017, 14, 23.	3.0	31
32	Anticancer potential of sanguinarine for various human malignancies. Future Medicinal Chemistry, 2017, 9, 933-950.	2.3	45
33	Exportin 1 (XPO1) inhibition leads to restoration of tumor suppressor miR-145 and consequent suppression of pancreatic cancer cell proliferation and migration. Oncotarget, 2017, 8, 82144-82155.	1.8	43
34	Targeting of X-linked inhibitor of apoptosis protein and PI3-kinase/AKT signaling by embelin suppresses growth of leukemic cells. PLoS ONE, 2017, 12, e0180895.	2.5	36
35	Targeting ERK enhances the cytotoxic effect of the novel PI3K and mTOR dual inhibitor VS-5584 in preclinical models of pancreatic cancer. Oncotarget, 2017, 8, 44295-44311.	1.8	29
36	Vascular Endothelial Growth Factor (VEGF) Signaling in Tumour Vascularization: Potential and Challenges. Current Vascular Pharmacology, 2017, 15, 339-351.	1.7	143

#	Article	IF	CITATIONS
37	The Role of microRNAs in the Diagnosis and Treatment of Pancreatic Adenocarcinoma. Journal of Clinical Medicine, 2016, 5, 59.	2.4	27
38	Embelin-Mediated Apoptosis in Leukemic Cells via Generation of Reactive Oxygen Species. , 2016, , .		0
39	Targeting Cancer at the Nuclear Pore. Journal of Clinical Oncology, 2016, 34, 4180-4182.	1.6	18
40	Therapeutic Potential of Resveratrol in Lymphoid Malignancies. Nutrition and Cancer, 2016, 68, 365-373.	2.0	13
41	Anti-tumor activity of selective inhibitor of nuclear export (SINE) compounds, is enhanced in non-Hodgkin lymphoma through combination with mTOR inhibitor and dexamethasone. Cancer Letters, 2016, 383, 309-317.	7.2	28
42	The Molecular Genetics of Autosomal Recessive Nonsyndromic Intellectual Disability: a Mutational Continuum and Future Recommendations. Annals of Human Genetics, 2016, 80, 342-368.	0.8	21
43	Measurement of 1,5-anhydroglucitol in blood and saliva: from non-targeted metabolomics to biochemical assay. Journal of Translational Medicine, 2016, 14, 140.	4.4	28
44	Bortezomib-mediated downregulation of S-phase kinase protein-2 (SKP2) causes apoptotic cell death in chronic myelogenous leukemia cells. Journal of Translational Medicine, 2016, 14, 69.	4.4	36
45	F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities. Seminars in Cancer Biology, 2016, 36, 95-104.	9.6	29
46	Involvement of F-BOX proteins in progression and development of human malignancies. Seminars in Cancer Biology, 2016, 36, 18-32.	9.6	48
47	Role of leptin and leptin receptors in hematological malignancies. Leukemia and Lymphoma, 2016, 57, 10-16.	1.3	14
48	Abstract B38: Clinical translation of nuclear export inhibitor in metastatic pancreatic cancer. , 2016, ,		1
49	Combination of Selinexor and the Proteasome Inhibitor, Bortezomib Shows Synergistic Cytotoxicity in Diffuse Large B-Cells Lymphoma Cells In Vitro and In Vivo. Blood, 2016, 128, 4131-4131.	1.4	6
50	Cholesterol Depletion Alters Cardiomyocyte Subcellular Signaling and Increases Contractility. PLoS ONE, 2016, 11, e0154151.	2.5	15
51	Selinexor, a Selective Inhibitor of Nuclear Export (SINE) compound, acts through NF-ήB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death. Oncotarget, 2016, 7, 78883-78895.	1.8	92
52	Pristimerin Inhibits Growth and Induces Apoptosis in Human Colorectal Cancer Cells Through the Generation of Reactive Oxygen Species. , 2016, , .		0
53	Bortezomib Mediated Downregulation of F-box Protein, S-phase Kinase-Associated Protein 2 (SKP2) Causes Apoptotic Cell Death in Chronic Myelogenous Leukemia Cells. , 2016, , .		0
54	Novel Mitochondrial-Derived Peptide MOTS-c Inhibits Adipogenesis through Down Regulation of Master Gene PPAR in Murine Adipocytes. , 2016, , .		0

#	Article	IF	CITATIONS
55	Molecular and Peritoneal Microvascular Changes Cause Peritoneal Membrane Dysfunction by Uremia-Related Mechanisms. , 2016, , .		Ο
56	The MetaQ $\hat{a} {\ensuremath{ \in} }^{\ensuremath{ \ast} }$ a Platform for Targeted Metabolomics Studies in Qatar. , 2016, , .		0
57	Airway surface liquid volume expansion induces rapid changes in amiloride-sensitive Na+ transport across upper airway epithelium-Implications concerning the resolution of pulmonary edema. Physiological Reports, 2015, 3, e12453.	1.7	1
58	Targeting the Nuclear Export Protein XPO1/CRM1 Reverses Epithelial to Mesenchymal Transition. Scientific Reports, 2015, 5, 16077.	3.3	28
59	Broad targeting of resistance to apoptosis in cancer. Seminars in Cancer Biology, 2015, 35, S78-S103.	9.6	535
60	Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35, S276-S304.	9.6	220
61	Selecting efficacious Bcl-2 family inhibitors for optimal clinical outcome. Annals of Translational Medicine, 2015, 3, 312.	1.7	1
62	Systems and Network Pharmacology Strategies for Pancreatic Ductal Adenocarcinoma Therapy. , 2014, , 405-425.		1
63	Snail nuclear transport: The gateways regulating epithelial-to-mesenchymal transition?. Seminars in Cancer Biology, 2014, 27, 39-45.	9.6	70
64	Nuclear retention of Fbw7 by specific inhibitors of nuclear export leads to Notch1 degradation in pancreatic cancer. Oncotarget, 2014, 5, 3444-3454.	1.8	47
65	Selective Inhibitors of Nuclear Export Block Pancreatic Cancer Cell Proliferation and Reduce Tumor Growth in Mice. Gastroenterology, 2013, 144, 447-456.	1.3	109
66	Selective inhibitors of nuclear export for the treatment of non-Hodgkin's lymphomas. Haematologica, 2013, 98, 1098-1106.	3.5	59
67	Nuclear Export Mediated Regulation of MicroRNAs: Potential Target for Drug Intervention. Current Drug Targets, 2013, 14, 1094-1100.	2.1	40
68	Systems and Network Pharmacology Approaches to Cancer Stem Cells Research and Therapy. Journal of Stem Cell Research & Therapy, 2013, 01, .	0.3	5
69	Network Pharmacology: An Emerging Area in Anti-Cancer Drug Discovery. , 2012, , 393-418.		0
70	Emerging Bcl-2 inhibitors for the treatment of cancer. Expert Opinion on Emerging Drugs, 2011, 16, 59-70.	2.4	92
71	Progress in Nanotechnology Based Approaches to Enhance the Potential of Chemopreventive Agents. Cancers, 2011, 3, 428-445.	3.7	48
72	Small Molecule Inhibitors of Bcl-2 Family Proteins for Pancreatic Cancer Therapy. Cancers, 2011, 3, 1527-1549.	3.7	31

#	Article	IF	CITATIONS
73	Development of a Novel Small Molecule CRM-1 Inhibitor for Non Hodgkin's Lymphoma. Blood, 2011, 118, 598-598.	1.4	5
74	Network Modeling of MDM2 Inhibitor-Oxaliplatin Combination Reveals Biological Synergy in wt-p53 solid tumors. Oncotarget, 2011, 2, 378-392.	1.8	45
75	Reactivation of p53 by Novel MDM2 Inhibitors: Implications for Pancreatic Cancer Therapy. Current Cancer Drug Targets, 2010, 10, 319-331.	1.6	37
76	Preclinical Studies of Apogossypolone, a Novel Pan Inhibitor of Bcl-2 and Mcl-1, Synergistically Potentiates Cytotoxic Effect of Gemcitabine in Pancreatic Cancer Cells. Pancreas, 2010, 39, 323-331.	1.1	22
77	l-kappa-kinase-2 (IKK-2) inhibition potentiates vincristine cytotoxicity in non-Hodgkin's lymphoma. Molecular Cancer, 2010, 9, 228.	19.2	14
78	PAR-4 as a possible new target for pancreatic cancer therapy. Expert Opinion on Therapeutic Targets, 2010, 14, 611-620.	3.4	17
79	TW-37, a Small-Molecule Inhibitor of Bcl-2, Inhibits Cell Growth and Induces Apoptosis in Pancreatic Cancer: Involvement of Notch-1 Signaling Pathway. Cancer Research, 2009, 69, 2757-2765.	0.9	78
80	Superior Antitumor Activity of SAR3419 to Rituximab in Xenograft Models for Non-Hodgkin's Lymphoma. Clinical Cancer Research, 2009, 15, 4038-4045.	7.0	53
81	Nonâ€peptidic small molecule inhibitors against Bclâ€2 for cancer therapy. Journal of Cellular Physiology, 2009, 218, 13-21.	4.1	109
82	An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Molecular Cancer, 2009, 8, 115.	19.2	71
83	SMI of Bcl-2 TW-37 is active across a spectrum of B-cell tumors irrespective of their proliferative and differentiation status. Journal of Hematology and Oncology, 2009, 2, 8.	17.0	26
84	Chemoprevention of Pancreatic Cancer: Characterization of Par-4 and its Modulation by 3,3′ Diindolylmethane (DIM). Pharmaceutical Research, 2008, 25, 2117-2124.	3.5	56
85	Preclinical studies of Apogossypolone: a new nonpeptidic pan small-molecule inhibitor of Bcl-2, Bcl-XL and Mcl-1 proteins in Follicular Small Cleaved Cell Lymphoma model. Molecular Cancer, 2008, 7, 20.	19.2	68
86	Apogossypolone, a nonpeptidic small molecule inhibitor targeting Bcl-2 family proteins, effectively inhibits growth of diffuse large cell lymphoma cells in vitro and in vivo. Cancer Biology and Therapy, 2008, 7, 1418-1426.	3.4	40
87	Critical role of prostate apoptosis response-4 in determining the sensitivity of pancreatic cancer cells to small-molecule inhibitor-induced apoptosis. Molecular Cancer Therapeutics, 2008, 7, 2884-2893.	4.1	37
88	Small-Molecule Inhibitors of Bcl-2 Family Proteins as Therapeutic Agents in Cancer. Recent Patents on Anti-Cancer Drug Discovery, 2008, 3, 20-30.	1.6	26
89	Transactivator of transcription–tagged cell cycle and apoptosis regulatory protein-1 peptides suppress the growth of human breast cancer cells in vitro and in vivo. Molecular Cancer Therapeutics, 2007, 6, 1661-1672.	4.1	28
90	Preclinical Studies of TW-37, a New Nonpeptidic Small-Molecule Inhibitor of Bcl-2, in Diffuse Large Cell Lymphoma Xenograft Model Reveal Drug Action on Both Bcl-2 and Mcl-1. Clinical Cancer Research, 2007, 13, 2226-2235.	7.0	147

#	Article	IF	CITATIONS
91	Superior Anti-Tumor Activity of the CD19-Directed Immunotoxin, SAR3419 to Rituximab in Non-Hodgkin's Xenograft Animal Models: Preclinical Evaluation Blood, 2007, 110, 2339-2339.	1.4	10
92	Epidermal Growth Factor Receptor–Related Protein Inhibits Cell Growth and Invasion in Pancreatic Cancer. Cancer Research, 2006, 66, 7653-7660.	0.9	51
93	Nonpeptidic Small-Molecule Inhibitor of Bcl-2 and Bcl-XL, (???)-Gossypol, Enhances Biological Effect of Genistein Against BxPC-3 Human Pancreatic Cancer Cell Line. Pancreas, 2005, 31, 317-324.	1.1	56
94	Preclinical studies of a nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-X(L) [(-)-gossypol] against diffuse large cell lymphoma. Molecular Cancer Therapeutics, 2005, 4, 13-21.	4.1	67
95	Genistein sensitizes diffuse large cell lymphoma to CHOP (cyclophosphamide, doxorubicin, vincristine,) Tj ETQq1	1 0.78431 4.1	4 rgBT /Ov
96	Rituximab, Cyclophosphamide, Dexamethasone (RCD) Regimen Induces Cure in WSU-WM Xenograft Model and a Partial Remission in Previously Treated Waldenstrom's Macroglobulinemia Patient. Journal of Drug Targeting, 2002, 10, 405-411.	4.4	10
97	Bcl-2 antisense oligonucleotides are effective against systemic but not central nervous system disease in severe combined immunodeficient mice bearing human t(14;18) follicular lymphoma. Clinical Cancer Research, 2002, 8, 1277-83.	7.0	15
98	Treatment-induced Expression of Anti-apoptotic Proteins in WSU-CLL, a Human Chronic Lymphocytic Leukemia Cell Line. Journal of Drug Targeting, 2001, 9, 329-339.	4.4	6
99	Modulation of cIAP-1 by Novel Antitubulin Agents When Combined with Bryostatin 1 Results in Increased Apoptosis in the Human Early Pre-B Acute Lymphoblastic Leukemia Cell Line Reh. Biochemical and Biophysical Research Communications, 1999, 266, 76-80.	2.1	10
100	Induction of apoptosis in breast cancer cells by TPA. Oncogene, 1998, 17, 2915-2920.	5.9	25
101	Potentiation of 2-Chlorodeoxyadenosine Activity by Bryostatin 1 in the Resistant Chronic Lymphocytic Leukemia Cell Line (WSU-CLL): Association with Increased Ratios of dCK/5'-NT and Bax/Bcl-2. Biological Chemistry, 1998, 379, 1253-1262.	2.5	27
102	Establishment of a Human Pancreatic Tumor Xenograft Model. Pancreas, 1998, 16, 19-25.	1.1	35
103	The Novel Cyclin-Dependent Kinase Inhibitor Flavopiridol Downregulates Bcl-2 and Induces Growth Arrest and Apoptosis in Chronic B-Cell Leukemia Lines. Blood, 1997, 90, 4307-4312.	1.4	179
104	Bryostatin 1 induces apoptosis and augments inhibitory effects of vincristine in human diffuse large cell lymphoma. Leukemia Research, 1995, 19, 667-673.	0.8	49
105	Protein study of T and B acute lymphoblastic leukemia cell lines. Electrophoresis, 1994, 15, 1218-1224.	2.4	3
106	Protein studies of human non-Hodgkin's B-lymphoma: Appraisal by two-dimensional gel electrophoresis. Electrophoresis, 1994, 15, 1566-1572.	2.4	3
107	A human b-cell lymphoma line with a de novo multidrug resistance phenotype. Cancer, 1992, 69, 1468-1474.	4.1	11
108	Expression of a New Cellular Protein by Monocytoid B-Lymphocytes Differentiated from the Acute Lymphoblastic Leukemia Cell Line (REH). Leukemia and Lymphoma, 1991, 4, 277-284.	1.3	3

#	Article	IF	CITATIONS
109	Induced expression of A monocytoid B lymphocyte antigen phenotype on the reh cell line. American Journal of Hematology, 1990, 33, 153-159.	4.1	11
110	Conversion of high grade lymphoma tumor cell line to intermediate grade with tpa and bryostatin 1 as determined by polypeptide analysis on 2D gel electrophoresis. Hematological Oncology, 1990, 8, 81-89.	1.7	17