Raghu V Maligal-Ganesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1596491/publications.pdf

Version: 2024-02-01

20 papers

1,141 citations

623734 14 h-index ⁷⁵²⁶⁹⁸
20
g-index

21 all docs

21 docs citations

times ranked

21

2060 citing authors

#	Article	IF	CITATIONS
1	Pt Nanoclusters Confined within Metal–Organic Framework Cavities for Chemoselective Cinnamaldehyde Hydrogenation. ACS Catalysis, 2014, 4, 1340-1348.	11.2	367
2	A Ship-in-a-Bottle Strategy To Synthesize Encapsulated Intermetallic Nanoparticle Catalysts: Exemplified for Furfural Hydrogenation. ACS Catalysis, 2016, 6, 1754-1763.	11.2	148
3	Utilizing mixed-linker zirconium based metal-organic frameworks to enhance the visible light photocatalytic oxidation of alcohol. Chemical Engineering Science, 2015, 124, 45-51.	3.8	112
4	Impact of Linker Engineering on the Catalytic Activity of Metal–Organic Frameworks Containing Pd(II)–Bipyridine Complexes. ACS Catalysis, 2016, 6, 6324-6328.	11.2	89
5	Intermetallic structures with atomic precision for selective hydrogenation of nitroarenes. Journal of Catalysis, 2017, 356, 307-314.	6.2	53
6	Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 6186-6192.	10.3	50
7	Intermetallic NaAu ₂ as a Heterogeneous Catalyst for Low-Temperature CO Oxidation. Journal of the American Chemical Society, 2013, 135, 9592-9595.	13.7	46
8	Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis. Nano Research, 2018, 11, 3469-3479.	10.4	46
9	Toward Phase and Catalysis Control: Tracking the Formation of Intermetallic Nanoparticles at Atomic Scale. CheM, 2019, 5, 1235-1247.	11.7	45
10	Highâ€Temperatureâ€Stable and Regenerable Catalysts: Platinum Nanoparticles in Aligned Mesoporous Silica Wells. ChemSusChem, 2013, 6, 1915-1922.	6.8	34
11	Catalytic properties of intermetallic platinum-tin nanoparticles with non-stoichiometric compositions. Journal of Catalysis, 2019, 374, 136-142.	6.2	29
12	Kinetics, energetics, and size dependence of the transformation from Pt to ordered PtSn intermetallic nanoparticles. Nanoscale, 2019, 11, 5336-5345.	5.6	25
13	An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures. Nanoscale, 2015, 7, 16721-16728.	5 . 6	21
14	Influence of Sn on Stability and Selectivity of Pt–Sn@UiO-66-NH ₂ in Furfural Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 17495-17501.	3.7	16
15	Subâ€5 nm Intermetallic Nanoparticles Confined in Mesoporous Silica Wells for Selective Hydrogenation of Acetylene to Ethylene. ChemCatChem, 2020, 12, 3022-3029.	3.7	14
16	Cyclopropane Hydrogenation vs Isomerization over Pt and Pt–Sn Intermetallic Nanoparticle Catalysts: A Parahydrogen Spin-Labeling Study. Journal of Physical Chemistry C, 2020, 124, 8304-8309.	3.1	14
17	Pairwise semi-hydrogenation of alkyne to <i>cis</i> -alkene on platinum-tin intermetallic compounds. Nanoscale, 2020, 12, 8519-8524.	5 . 6	12
18	Atomic-Scale Structure of Mesoporous Silica-Encapsulated Pt and PtSn Nanoparticles Revealed by Dynamic Nuclear Polarization-Enhanced 29Si MAS NMR Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 7299-7307.	3.1	9

=	#	Article	lF	CITATIONS
:	19	Enhanced Chemoselectivity in Pt–Fe@mSiO2 Bimetallic Nanoparticles in the Absence of Surface Modifying Ligands. Topics in Catalysis, 2018, 61, 940-948.	2.8	7
:	20	Mesoporous Silica Encapsulated Platinum–Tin Intermetallic Nanoparticles Catalyze Hydrogenation with an Unprecedented 20% Pairwise Selectivity for Parahydrogen Enhanced Nuclear Magnetic Resonance. Journal of Physical Chemistry Letters, 2022, 13, 4125-4132.	4.6	4