
Brian J Druker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1596175/publications.pdf Version: 2024-02-01

RDIAN | DDIIKED

#	Article	IF	CITATIONS
1	Identification and prioritization of myeloid malignancy germline variants in a large cohort of adult patients with AML. Blood, 2022, 139, 1208-1221.	0.6	48
2	MS4A3 promotes differentiation in chronic myeloid leukemia by enhancing common β-chain cytokine receptor endocytosis. Blood, 2022, 139, 761-778.	0.6	7
3	Associating drug sensitivity with differentiation status identifies effective combinations for acute myeloid leukemia. Blood Advances, 2022, 6, 3062-3067.	2.5	6
4	Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Research, 2022, 82, 1448-1460.	0.4	24
5	Mutated <i>SETBP1</i> activates transcription of Myc programs to accelerate <i>CSF3R</i> -driven myeloproliferative neoplasms. Blood, 2022, 140, 644-658.	0.6	12
6	Luxeptinib (CG-806) Targets FLT3 and Clusters of Kinases Operative in Acute Myeloid Leukemia. Molecular Cancer Therapeutics, 2022, 21, 1125-1135.	1.9	4
7	PU.1 and MYC transcriptional network defines synergistic drug responses to KIT and LSD1 inhibition in acute myeloid leukemia. Leukemia, 2022, , .	3.3	7
8	BCR-ABL+ Chronic Myeloid Leukemia Arising in a Family With Inherited ANKRD26-Related Thrombocytopenia. JCO Precision Oncology, 2021, 5, 415-417.	1.5	0
9	Proteasome 26S subunit, non-ATPases 1 (PSMD1) and 3 (PSMD3), play an oncogenic role in chronic myeloid leukemia by stabilizing nuclear factor-kappa B. Oncogene, 2021, 40, 2697-2710.	2.6	20
10	Bayesian multi-source regression and monocyte-associated gene expression predict BCL-2 inhibitor resistance in acute myeloid leukemia. Npj Precision Oncology, 2021, 5, 71.	2.3	12
11	Lentiviral-Driven Discovery of Cancer Drug Resistance Mutations. Cancer Research, 2021, 81, 4685-4695.	0.4	6
12	ERBB2/HER2 mutations are transforming and therapeutically targetable in leukemia. Leukemia, 2020, 34, 2798-2804.	3.3	16
13	Precision medicine treatment in acute myeloid leukemia using prospective genomic profiling: feasibility and preliminary efficacy of the Beat AML Master Trial. Nature Medicine, 2020, 26, 1852-1858.	15.2	104
14	Simultaneous kinase inhibition with ibrutinib and BCL2 inhibition with venetoclax offers a therapeutic strategy for acute myeloid leukemia. Leukemia, 2020, 34, 2342-2353.	3.3	18
15	NT157 has antineoplastic effects and inhibits IRS1/2 and STAT3/5 in JAK2V617F-positive myeloproliferative neoplasm cells. Signal Transduction and Targeted Therapy, 2020, 5, 5.	7.1	26
16	Genomic landscape of neutrophilic leukemias of ambiguous diagnosis. Blood, 2019, 134, 867-879.	0.6	55
17	Targeting BCR-ABL1 in Chronic Myeloid Leukemia by PROTAC-Mediated Targeted Protein Degradation. Cancer Research, 2019, 79, 4744-4753.	0.4	139
18	Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia. Leukemia, 2019. 33, 1835-1850.	3.3	97

#	Article	IF	CITATIONS
19	The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells. Cancer Discovery, 2019, 9, 910-925.	7.7	215
20	Challenges and approaches to implementing master/basket trials in oncology. Blood Advances, 2019, 3, 2237-2243.	2.5	11
21	Myeloid lineage enhancers drive oncogene synergy in CEBPA/CSF3R mutant acute myeloid leukemia. Nature Communications, 2019, 10, 5455.	5.8	22
22	Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms. Nature Communications, 2019, 10, 244.	5.8	111
23	A novel <i>AGGF1-PDGFRb</i> fusion in pediatric T-cell acute lymphoblastic leukemia. Haematologica, 2018, 103, e87-e91.	1.7	8
24	Functional genomic landscape of acute myeloid leukaemia. Nature, 2018, 562, 526-531.	13.7	907
25	Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. New England Journal of Medicine, 2017, 376, 917-927.	13.9	926
26	Peter C. Nowell (1928–2016). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4569-4570.	3.3	0
27	Molecularly targeted drug combinations demonstrate selective effectiveness for myeloid- and lymphoid-derived hematologic malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7554-E7563.	3.3	86
28	Age-related mutations and chronic myelomonocytic leukemia. Leukemia, 2016, 30, 906-913.	3.3	119
29	Extreme mutational selectivity of axitinib limits its potential use as a targeted therapeutic for BCR-ABL1-positive leukemia. Leukemia, 2016, 30, 1418-1421.	3.3	9
30	YM155 potently kills acute lymphoblastic leukemia cells through activation of the DNA damage pathway. Journal of Hematology and Oncology, 2015, 8, 39.	6.9	32
31	Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5381-90.	3.3	93
32	Imatinib 800Âmg daily induces deeper molecular responses than imatinib 400Âmg daily: results of <scp>SWOG</scp> S0325, an intergroup randomized <scp>PHASE II</scp> trial in newly diagnosed chronic phase chronic myeloid leukaemia. British Journal of Haematology, 2014, 164, 223-232.	1.2	56
33	BCR-ABL1 Compound Mutations Combining Key Kinase Domain Positions Confer Clinical Resistance to Ponatinib in Ph Chromosome-Positive Leukemia. Cancer Cell, 2014, 26, 428-442.	7.7	292
34	BCR-ABL1 compound mutations in tyrosine kinase inhibitor–resistant CML: frequency and clonal relationships. Blood, 2013, 121, 489-498.	0.6	187
35	Threshold Levels of ABL Tyrosine Kinase Inhibitors Retained in Chronic Myeloid Leukemia Cells Determine Their Commitment to Apoptosis. Cancer Research, 2013, 73, 3356-3370.	0.4	26
36	Oncogenic <i>CSF3R</i> Mutations in Chronic Neutrophilic Leukemia and Atypical CML. New England Journal of Medicine, 2013, 368, 1781-1790.	13.9	499

#	Article	IF	CITATIONS
37	KIT Signaling Governs Differential Sensitivity of Mature and Primitive CML Progenitors to Tyrosine Kinase Inhibitors. Cancer Research, 2013, 73, 5775-5786.	0.4	22
38	Kinase Pathway Dependence in Primary Human Leukemias Determined by Rapid Inhibitor Screening. Cancer Research, 2013, 73, 285-296.	0.4	134
39	Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors. Leukemia, 2012, 26, 1140-1143.	3.3	97
40	Ponatinib in Refractory Philadelphia Chromosome–Positive Leukemias. New England Journal of Medicine, 2012, 367, 2075-2088.	13.9	668
41	TNFα facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood, 2011, 118, 6392-6398.	0.6	227
42	Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. Journal of Clinical Investigation, 2011, 121, 396-409.	3.9	661
43	The ABL Switch Control Inhibitor DCC-2036 Is Active against the Chronic Myeloid Leukemia Mutant BCR-ABLT315I and Exhibits a Narrow Resistance Profile. Cancer Research, 2011, 71, 3189-3195.	0.4	91
44	Targeting the BCR-ABL Signaling Pathway in Therapy-Resistant Philadelphia Chromosome-Positive Leukemia. Clinical Cancer Research, 2011, 17, 212-221.	3.2	127
45	A gene expression signature of CD34+ cells to predict major cytogenetic response in chronic-phase chronic myeloid leukemia patients treated with imatinib. Blood, 2010, 115, 315-325.	0.6	108
46	CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood, 2010, 115, 5232-5240.	0.6	216
47	The function of the pleckstrin homology domain in BCR–ABL-mediated leukemogenesis. Leukemia, 2010, 24, 226-229.	3.3	12
48	Clonal chromosomal abnormalities in CD34+/CD38â^' hematopoietic cells from cytogenetically normal chronic myeloid leukemia patients with a complete cytogenetic response to tyrosine kinase inhibitors. Leukemia, 2010, 24, 1525-1528.	3.3	6
49	MET Receptor Sequence Variants R970C and T992I Lack Transforming Capacity. Cancer Research, 2010, 70, 6233-6237.	0.4	65
50	A Specific Need for CRKL in p210BCR-ABL–Induced Transformation of Mouse Hematopoietic Progenitors. Cancer Research, 2010, 70, 7325-7335.	0.4	33
51	A BCR-ABL Mutant Lacking Direct Binding Sites for the GRB2, CBL and CRKL Adapter Proteins Fails to Induce Leukemia in Mice. PLoS ONE, 2009, 4, e7439.	1.1	24
52	RNAi screen for rapid therapeutic target identification in leukemia patients. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8695-8700.	3.3	110
53	AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance. Cancer Cell, 2009, 16, 401-412.	7.7	1,050
54	High-throughput mutational screen of the tyrosine kinome in chronic myelomonocytic leukemia. Leukemia, 2009, 23, 406-409.	3.3	15

#	Article	IF	CITATIONS
55	Functional characterization of an activating TEK mutation in acute myeloid leukemia: a cellular context-dependent activating mutation. Leukemia, 2009, 23, 1345-1348.	3.3	5
56	Perspectives on the development of imatinib and the future of cancer research. Nature Medicine, 2009, 15, 1149-1152.	15.2	101
57	High-throughput sequencing screen reveals novel, transforming RAS mutations in myeloid leukemia patients. Blood, 2009, 113, 1749-1755.	0.6	119
58	An activating KRAS mutation in imatinib-resistant chronic myeloid leukemia. Leukemia, 2008, 22, 2269-2272.	3.3	32
59	Bruton's tyrosine kinase is not essential for Bcr-Abl-mediated transformation of lymphoid or myeloid cells. Leukemia, 2008, 22, 1354-1360.	3.3	8
60	Characterization of BCR-ABL deletion mutants from patients with chronic myeloid leukemia. Leukemia, 2008, 22, 1184-1190.	3.3	38
61	An Intron-Derived Insertion/Truncation Mutation in the BCR-ABL Kinase Domain in Chronic Myeloid Leukemia Patients Undergoing Kinase Inhibitor Therapy. Journal of Molecular Diagnostics, 2008, 10, 177-180.	1.2	55
62	Translation of the Philadelphia chromosome into therapy for CML. Blood, 2008, 112, 4808-4817.	0.6	587
63	RNAi screening of the tyrosine kinome identifies therapeutic targets in acute myeloid leukemia. Blood, 2008, 111, 2238-2245.	0.6	67
64	High-throughput sequence analysis of the tyrosine kinome in acute myeloid leukemia. Blood, 2008, 111, 4788-4796.	0.6	84
65	A Half-Log Increase in BCR-ABL RNA Predicts a Higher Risk of Relapse in Patients with Chronic Myeloid Leukemia with an Imatinib-Induced Complete Cytogenetic Response. Clinical Cancer Research, 2007, 13, 6136-6143.	3.2	115
66	Mutations of the BCR-ABL-kinase domain occur in a minority of patients with stable complete cytogenetic response to imatinib. Leukemia, 2007, 21, 489-493.	3.3	74
67	Identification of Driver and Passenger Mutations of FLT3 by High-Throughput DNA Sequence Analysis and Functional Assessment of Candidate Alleles. Cancer Cell, 2007, 12, 501-513.	7.7	174
68	BCR-ABL mRNA levels at and after the time of a complete cytogenetic response (CCR) predict the duration of CCR in imatinib mesylate–treated patients with CML. Blood, 2006, 107, 4250-4256.	0.6	120
69	Targeted CML therapy: controlling drug resistance, seeking cure. Current Opinion in Genetics and Development, 2006, 16, 92-99.	1.5	166
70	Phosphoproteomic analysis of AML cell lines identifies leukemic oncogenes. Leukemia Research, 2006, 30, 1097-1104.	0.4	53
71	Establishment of a murine model of aggressive systemic mastocytosis/mast cell leukemia. Experimental Hematology, 2006, 34, 284-288.	0.2	22
72	Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell, 2006, 10, 65-75.	7.7	295

Brian J Druker

#	Article	IF	CITATIONS
73	Antileukemic Activity of Lysophosphatidic Acid Acyltransferase-β Inhibitor CT32228 in Chronic Myelogenous Leukemia Sensitive and Resistant to Imatinib. Clinical Cancer Research, 2006, 12, 6540-6546.	3.2	22
74	Dasatinib (BMS-354825), a Dual SRC/ABL Kinase Inhibitor, Inhibits the Kinase Activity of Wild-Type, Juxtamembrane, and Activation Loop Mutant KIT Isoforms Associated with Human Malignancies. Cancer Research, 2006, 66, 473-481.	0.4	437
75	Characterization of Murine JAK2V617F-Positive Myeloproliferative Disease. Cancer Research, 2006, 66, 11156-11165.	0.4	184
76	Kinase Domain Mutants of Bcr-Abl Exhibit Altered Transformation Potency, Kinase Activity, and Substrate Utilization, Irrespective of Sensitivity to Imatinib. Molecular and Cellular Biology, 2006, 26, 6082-6093.	1.1	192
77	Five-Year Follow-up of Patients Receiving Imatinib for Chronic Myeloid Leukemia. New England Journal of Medicine, 2006, 355, 2408-2417.	13.9	3,212
78	RNAi-induced down-regulation of FLT3 expression in AML cell lines increases sensitivity to MLN518. Blood, 2005, 105, 2952-2954.	0.6	39
79	In vitro Activity of Bcr-Abl Inhibitors AMN107 and BMS-354825 against Clinically Relevant Imatinib-Resistant Abl Kinase Domain Mutants. Cancer Research, 2005, 65, 4500-4505.	0.4	997
80	e8a2 BCR–ABL: more frequent than other atypical BCR–ABL variants?. Leukemia, 2005, 19, 681-684.	3.3	35
81	A single nucleotide polymorphism in the coding region of ABL and its effects on sensitivity to imatinib. Leukemia, 2005, 19, 1859-1862.	3.3	18
82	Zoledronate inhibits proliferation and induces apoptosis of imatinib-resistant chronic myeloid leukaemia cells. Leukemia, 2005, 19, 1896-1904.	3.3	52
83	AMN107: Tightening the grip of imatinib. Cancer Cell, 2005, 7, 117-119.	7.7	93
84	Low-Level Expression of Proapoptotic Bcl-2–Interacting Mediator in Leukemic Cells in Patients with Chronic Myeloid Leukemia: Role of BCR/ABL, Characterization of Underlying Signaling Pathways, and Reexpression by Novel Pharmacologic Compounds. Cancer Research, 2005, 65, 9436-9444.	0.4	80
85	Combined Abl Inhibitor Therapy for Minimizing Drug Resistance in Chronic Myeloid Leukemia: Src/Abl Inhibitors Are Compatible with Imatinib. Clinical Cancer Research, 2005, 11, 6987-6993.	3.2	96
86	Identification of mTOR as a novel bifunctional target in chronic myeloid leukemia: dissection of growthâ€inhibitory and VEGFâ€suppressive effects of rapamycin in leukemic cells. FASEB Journal, 2005, 19, 960-962.	0.2	56
87	The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood, 2005, 105, 2640-2653.	0.6	1,137
88	Molecularly Targeted Therapy: Have the Floodgates Opened?. Oncologist, 2004, 9, 357-360.	1.9	48
89	Detection of ABL kinase domain mutations with denaturing high-performance liquid chromatography. Leukemia, 2004, 18, 864-871.	3.3	62
90	Coexistence of phosphotyrosine-dependent and -independent interactions between Cbl and Bcr-Abl. Experimental Hematology, 2004, 32, 113-121.	0.2	8

#	Article	IF	CITATIONS
91	SRCircumventing imatinib resistance. Cancer Cell, 2004, 6, 108-110.	7.7	33
92	Catalytic domains of tyrosine kinases determine the phosphorylation sites within c-Cbl. FEBS Letters, 2004, 577, 555-562.	1.3	15
93	In vitro efficacy of combined treatment depends on the underlying mechanism of resistance in imatinib-resistant Bcr-Abl–positive cell lines. Blood, 2004, 103, 208-215.	0.6	93
94	c-CBL is not required for leukemia induction by Bcr-Abl in mice. Oncogene, 2003, 22, 8852-8860.	2.6	13
95	Specific Targeted Therapy of Chronic Myelogenous Leukemia with Imatinib. Pharmacological Reviews, 2003, 55, 401-423.	7.1	305
96	Imatinib As a Paradigm of Targeted Therapies. Journal of Clinical Oncology, 2003, 21, 239s-245.	0.8	50
97	Imatinib mesylate in the treatment of chronic myeloid leukaemia. Expert Opinion on Pharmacotherapy, 2003, 4, 963-971.	0.9	45
98	Practical Management of Patients With Chronic Myeloid Leukemia Receiving Imatinib. Journal of Clinical Oncology, 2003, 21, 1637-1647.	0.8	364
99	Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood, 2003, 101, 4611-4614.	0.6	304
100	No correlation between the proliferative status of Bcr-Abl positive cell lines and the proapoptotic activity of imatinib mesylate (Gleevecâ,,¢/Glivec®). The Hematology Journal, 2003, 4, 413-419.	2.0	16
101	Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood, 2002, 99, 1928-1937.	0.6	943
102	Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood, 2002, 99, 3530-3539.	0.6	1,096
103	A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood, 2002, 100, 1965-1971.	0.6	534
104	STI571 (Gleevecâ,,¢) as a paradigm for cancer therapy. Trends in Molecular Medicine, 2002, 8, S14-S18.	3.5	227
105	Perspectives on the development of a molecularly targeted agent. Cancer Cell, 2002, 1, 31-36.	7.7	260
106	Inhibition of the Bcr-Abl tyrosine kinase as a therapeutic strategy for CML. Oncogene, 2002, 21, 8541-8546.	2.6	107
107	Efficacy and Safety of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in Chronic Myeloid Leukemia. New England Journal of Medicine, 2001, 344, 1031-1037.	13.9	4,825
108	Activity of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in the Blast Crisis of Chronic Myeloid Leukemia and Acute Lymphoblastic Leukemia with the Philadelphia Chromosome. New England Journal of Medicine, 2001, 344, 1038-1042.	13.9	2,593