Myunghwan Byun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1595915/publications.pdf

Version: 2024-02-01

70 papers

5,199 citations

147801 31 h-index 102487 66 g-index

76 all docs

76
docs citations

76 times ranked 7388 citing authors

#	Article	lF	CITATIONS
1	Micro-to-Nanometer Scale Patterning of Perovskite Inks via Controlled Self-Assemblies. Materials, 2022, 15, 1521.	2.9	2
2	Ferroelectric Polymer Nanofibers Reminiscent of Morphotropic Phase Boundary Behavior for Improved Piezoelectric Energy Harvesting. Small, 2022, 18, e2104472.	10.0	16
3	Facile synthesis of Cd1-xZnxSe1-ySy/CdSe/Cd1-xZnxSe1-ySy nanoplatelets with precisely controlled emission wavelength. Thin Solid Films, 2022, 751, 139218.	1.8	O
4	Ferroelectric Polymer Nanofibers Reminiscent of Morphotropic Phase Boundary Behavior for Improved Piezoelectric Energy Harvesting (Small 15/2022). Small, 2022, 18, .	10.0	1
5	Facile Synthesis of Mesoporous Silica at Room Temperature for CO2 Adsorption. Micromachines, 2022, 13, 926.	2.9	4
6	Transparent planar layer copper heaters for wearable electronics. Applied Surface Science, 2021, 559, 149895.	6.1	9
7	A 3D printing route to fabrication of ZrCuSi alloy target for ZrCuSiN nanocomposite thin films. Applied Surface Science, 2021, 562, 150136.	6.1	3
8	Controlled self-assembly of block copolymers in printed sub-20 nm cross-bar structures. Nanoscale Advances, 2021, 3, 5083-5089.	4.6	4
9	Highly flexible, transparent and conductive ultrathin silver film heaters for wearable electronics applications. Thin Solid Films, 2020, 697, 137835.	1.8	27
10	Thermally assisted nanotransfer printing with sub–20-nm resolution and 8-inch wafer scalability. Science Advances, 2020, 6, eabb6462.	10.3	35
11	Hierarchically ordered hybrid nanostructures via spontaneous self-assembly of block copolymer blends. Thin Solid Films, 2020, 701, 137928.	1.8	1
12	Lithography-Free Route to Hierarchical Structuring of High-χ Block Copolymers on a Gradient Patterned Surface. Materials, 2020, 13, 304.	2.9	0
13	Thickness estimation of the silica-like thin layers via swelling-driven wrinkling instability. Thin Solid Films, 2020, 697, 137812.	1.8	1
14	Sintering Temperature Effect on the Luminescence Properties of Y2O3:Tb3+ Phosphors Synthesized using a Liquid-Phase Reaction. Journal of the Korean Physical Society, 2020, 77, 288-292.	0.7	0
15	Effect of Surface Roughness on the Formation of Nano-to-Mirco Patterns Using Pattern Transfer Printing. Journal of Korean Institute of Metals and Materials, 2020, 58, 26-31.	1.0	0
16	Pattern formation of metal–oxide hybrid nanostructures via the self-assembly of di-block copolymer blends. Nanoscale, 2019, 11, 18559-18567.	5.6	15
17	Characterization of Copper–Graphite Composites Fabricated via Electrochemical Deposition and Spark Plasma Sintering. Applied Sciences (Switzerland), 2019, 9, 2853.	2.5	9
18	Spontaneous capillary breakup of suspended gradient polymer stripes into spatially ordered dot arrays. Applied Surface Science, 2019, 475, 1003-1009.	6.1	5

#	Article	IF	CITATIONS
19	Spatially Ordered Poly(3â€hexylthiophene) Fibril Nanostructures via Controlled Evaporative Selfâ€Assembly. Advanced Materials Technologies, 2019, 4, 1800554.	5.8	12
20	Preparation of organic-inorganic nanocomposites using directly synthesized Br-functionalized nanocrystals. Applied Surface Science, 2019, 475, 695-699.	6.1	0
21	Convenient and Robust Route to Photoswitchable Hierarchical Liquid Crystal Polymer Stripes via Flow-Enabled Self-Assembly. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4961-4970.	8.0	29
22	Poly(vinylpyrrolidone)-modification of sol-gel films for flexible piezoelectric energy harvesting systems. Thin Solid Films, 2018, 663, 31-36.	1.8	5
23	Harnessing Colloidal Crack Formation by Flowâ€Enabled Selfâ€Assembly. Angewandte Chemie - International Edition, 2017, 56, 4554-4559.	13.8	38
24	Harnessing Colloidal Crack Formation by Flowâ€Enabled Selfâ€Assembly. Angewandte Chemie, 2017, 129, 4625-4630.	2.0	4
25	Titelbild: Harnessing Colloidal Crack Formation by Flowâ€Enabled Selfâ€Assembly (Angew. Chem. 16/2017). Angewandte Chemie, 2017, 129, 4429-4429.	2.0	2
26	Grayscale and Halftone Gel Lithography as Promising Techniques for Swelling-Induced Deformation of Smart Polymer Hydrogel Films. Lecture Notes in Electrical Engineering, 2017, , 122-125.	0.4	1
27	Laser-induced phase separation of silicon carbide. Nature Communications, 2016, 7, 13562.	12.8	75
28	Stress-induced trench narrowing in Cu interconnect of sub-20 nm node: FEM simulation. Materials Science in Semiconductor Processing, 2016, 56, 100-105.	4.0	0
29	A Nonconventional Approach to Patterned Nanoarrays of DNA Strands for Templateâ€Assisted Assembly of Polyfluorene Nanowires. Small, 2016, 12, 4254-4263.	10.0	13
30	Nanowires: A Nonconventional Approach to Patterned Nanoarrays of DNA Strands for Templateâ€Assisted Assembly of Polyfluorene Nanowires (Small 31/2016). Small, 2016, 12, 4160-4160.	10.0	0
31	Performance Enhancement of Electronic and Energy Devices via Block Copolymer Selfâ€Assembly. Advanced Materials, 2015, 27, 3982-3998.	21.0	91
32	Self-Structured Conductive Filament Nanoheater for Chalcogenide Phase Transition. ACS Nano, 2015, 9, 6587-6594.	14.6	26
33	Flexible One Diode-One Phase Change Memory Array Enabled by Block Copolymer Self-Assembly. ACS Nano, 2015, 9, 4120-4128.	14.6	74
34	A Hyperâ€Stretchable Elasticâ€Composite Energy Harvester. Advanced Materials, 2015, 27, 2866-2875.	21.0	350
35	Flexible Piezoelectric Thinâ€Film Energy Harvesters and Nanosensors for Biomedical Applications. Advanced Healthcare Materials, 2015, 4, 646-658.	7.6	249
36	Flexible Inorganic Piezoelectric Acoustic Nanosensors for Biomimetic Artificial Hair Cells. Advanced Functional Materials, 2014, 24, 6914-6921.	14.9	176

3

#	Article	IF	Citations
37	Sensors: Flexible Inorganic Piezoelectric Acoustic Nanosensors for Biomimetic Artificial Hair Cells (Adv. Funct. Mater. 44/2014). Advanced Functional Materials, 2014, 24, 6898-6898.	14.9	0
38	Nanogenerators: Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester (Adv. Mater. 28/2014). Advanced Materials, 2014, 26, 4754-4754.	21.0	4
39	Flexible Electronics: Flexible Crossbar-Structured Resistive Memory Arrays on Plastic Substrates via Inorganic-Based Laser Lift-Off (Adv. Mater. 44/2014). Advanced Materials, 2014, 26, 7418-7418.	21.0	1
40	Highlyâ€Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates. Advanced Materials, 2014, 26, 2514-2520.	21.0	690
41	Nanogenerators: Highlyâ€Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates (Adv. Mater. 16/2014). Advanced Materials, 2014, 26, 2450-2450.	21.0	9
42	Topographically-Designed Triboelectric Nanogenerator via Block Copolymer Self-Assembly. Nano Letters, 2014, 14, 7031-7038.	9.1	310
43	Plasmonic dye-sensitized solar cells incorporated with Au–TiO ₂ nanostructures with tailored configurations. Nanoscale, 2014, 6, 1823-1832.	5.6	100
44	Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy and Environmental Science, 2014, 7, 4035-4043.	30.8	179
45	Flexible Crossbarâ€Structured Resistive Memory Arrays on Plastic Substrates via Inorganicâ€Based Laser Liftâ€Off. Advanced Materials, 2014, 26, 7480-7487.	21.0	118
46	Laser-Induced Solid-Phase Doped Graphene. ACS Nano, 2014, 8, 7671-7677.	14.6	48
47	Selfâ€Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMNâ€PT Piezoelectric Energy Harvester. Advanced Materials, 2014, 26, 4880-4887.	21.0	558
48	Swelling-driven rolling and anisotropic expansion of striped gel sheets. Soft Matter, 2013, 9, 8264.	2.7	77
49	An Unconventional Route to Hierarchically Ordered Block Copolymers on a Gradient Patterned Surface through Controlled Evaporative Selfâ€Assembly. Angewandte Chemie - International Edition, 2013, 52, 1122-1127.	13.8	56
50	Largeâ€Scale Hierarchically Structured Conjugated Polymer Assemblies with Enhanced Electrical Conductivity. Angewandte Chemie - International Edition, 2013, 52, 2564-2568.	13.8	79
51	Macroscopic Highly Aligned DNA Nanowires Created by Controlled Evaporative Self-Assembly. ACS Nano, 2013, 7, 4326-4333.	14.6	63
52	SELF-ASSEMBLY OF HIGHLY ORDERED STRUCTURES ENABLED BY CONTROLLED EVAPORATION OF CONFINED MICROFLUIDS., 2012, , 295-349.		1
53	A Simple Route to Hierarchically Assembled Micelles and Inorganic Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 12588-12592.	13.8	50
54	Designing Responsive Buckled Surfaces by Halftone Gel Lithography. Science, 2012, 335, 1201-1205.	12.6	727

#	Article	IF	CITATIONS
55	An Unconventional Route to High-Efficiency Dye-Sensitized Solar Cells via Embedding Graphitic Thin Films into TiO ₂ Nanoparticle Photoanode. Nano Letters, 2012, 12, 479-485.	9.1	150
56	Micro-patterns of reduced graphene oxide (RG-O) platelets crafted by a self-assembled template. Soft Matter, 2011, 7, 6811.	2.7	7
57	Controlled evaporative self-assembly of hierarchically structured bottlebrush block copolymer with nanochannels. Journal of Materials Chemistry, 2011, 21, 14248.	6.7	30
58	Simple route to ridge optical waveguide fabricated via controlled evaporative self-assembly. Journal of Materials Chemistry, 2011, 21, 5230.	6.7	11
59	Assembling and positioning latex nanoparticles via controlled evaporative self-assembly. Journal of Materials Chemistry, 2011, 21, 16968.	6.7	62
60	Guided Organization of <i>λ</i> â€ĐNA into Microring Arrays from Liquid Capillary Bridges. Small, 2011, 7, 1641-1646.	10.0	21
61	Hierarchically Ordered Structures Enabled by Controlled Evaporative Selfâ€Assembly. Small, 2010, 6, 2250-2255.	10.0	38
62	Self-assembly: Hierarchically Ordered Structures Enabled by Controlled Evaporative Self-Assembly (Small 20/2010). Small, 2010, 6, n/a-n/a.	10.0	0
63	Hierarchically Organized Structures Engineered from Controlled Evaporative Self-Assembly. Nano Letters, 2010, 10, 3111-3117.	9.1	101
64	Massively ordered microstructures composed of magnetic nanoparticles. Journal of Physics Condensed Matter, 2009, 21, 264014.	1.8	26
65	Robust Selfâ€Assembly of Highly Ordered Complex Structures by Controlled Evaporation of Confined Microfluids. Angewandte Chemie - International Edition, 2009, 48, 512-516.	13.8	96
66	Polystyreneâ^'Polylactide Bottlebrush Block Copolymer at the Air/Water Interface. Macromolecules, 2009, 42, 9027-9033.	4.8	37
67	Controlled evaporative self-assembly of hierarchically structured regioregular conjugated polymers. Soft Matter, 2009, 5, 1583.	2.7	71
68	Evaporative Organization of Hierarchically Structured Polymer Blend Rings. Macromolecules, 2008, 41, 9312-9317.	4.8	53
69	Self-Assembling Semicrystalline Polymer into Highly Ordered, Microscopic Concentric Rings by Evaporation. Langmuir, 2008, 24, 3525-3531.	3.5	44
70	Mesoscale Patterns Formed by Evaporation of a Polymer Solution in the Proximity of a Sphere on a Smooth Substrate:Â Molecular Weight and Curvature Effects. Macromolecules, 2007, 40, 2831-2836.	4.8	49