Carla Porto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1595907/publications.pdf Version: 2024-02-01

34 papers	3,514 citations	623734 14 h-index	414414 32 g-index
34	34	34	6279
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chemical constituents and dereplication study of <i>Lessingianthus brevifolius</i> (Less.) H.Rob. (Asteraceae) by UHPLC-HRMS and molecular networking. Natural Product Research, 2022, 36, 1889-1892.	1.8	3
2	Molecular networkâ€guided chemical profile and mass spectrometry, volatile compounds, and antimicrobial activity of <scp> <i> Scaptotrigona depilis </i> </scp> propolis. Rapid Communications in Mass Spectrometry, 2022, 36, .	1.5	2
3	Fumonisins alter redox balance in Nile tilapia fingerlings. Aquaculture, 2021, 530, 735735.	3.5	3
4	Untargeted Metabolomics Analysis by UHPLC-MS/MS of Soybean Plant in a Compatible Response to Phakopsora pachyrhizi Infection. Metabolites, 2021, 11, 179.	2.9	17
5	Adventitious root culture of Pfaffia glomerata (Spreng.) Pedersen in a roller bottle system: An alternative source of β-ecdysone. Phytochemistry Letters, 2021, 43, 1-7.	1.2	3
6	Soybean Metabolomics Based in Mass Spectrometry: Decoding the Plant's Signaling and Defense Responses under Biotic Stress. Journal of Agricultural and Food Chemistry, 2021, 69, 7257-7267.	5.2	10
7	Metabolomics of soybean green stem and foliar retention (GSFR) disease using mass spectrometry and molecular networking. Rapid Communications in Mass Spectrometry, 2020, 34, e8655.	1.5	8
8	Unraveling Asian Soybean Rust metabolomics using mass spectrometry and Molecular Networking approach. Scientific Reports, 2020, 10, 138.	3.3	25
9	The headspace-GC/MS: Alternative methodology employed in the bioreduction of (4S)-(+)-carvone mediated by human skin fungus. Biocatalysis and Biotransformation, 2020, , 1-9.	2.0	1
10	Fumonisin affects performance and modulates the gene expression of IGF-1 and GHR in Nile tilapia fingerlings and juveniles. Aquaculture, 2019, 507, 233-237.	3.5	7
11	Rapid discrimination of fungal strains isolated from human skin based on microbial volatile organic profiles. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1110-1111, 9-14.	2.3	6
12	Latex from Tabernaemontana catharinensis (A. DC)—Apocynaceae: An alternative for the sustainable production of biologically active compounds. Industrial Crops and Products, 2019, 129, 74-84.	5.2	8
13	Metabolomics and Agriculture: What Can Be Done?. MSystems, 2018, 3, .	3.8	13
14	Biotransformation of (+)-carvone and (â^')-carvone using human skin fungi: A green method of obtaining fragrances and flavours. Biocatalysis and Biotransformation, 2018, 36, 396-400.	2.0	8
15	Exploring the rumen fluid metabolome using liquid chromatography-high-resolution mass spectrometry and Molecular Networking. Scientific Reports, 2018, 8, 17971.	3.3	17
16	Identification and ultraâ€highâ€performance liquid chromatography coupled with highâ€resolution mass spectrometry characterization of biosurfactants, including a new surfactin, isolated from oilâ€contaminated environments. Microbial Biotechnology, 2018, 11, 759-769.	4.2	36
17	Development of an analytical method for identification of Aspergillus flavus based on chemical markers using HPLC-MS. Food Chemistry, 2018, 241, 113-121.	8.2	30
18	CHEMICAL COMPOSITIONS AND ANTIOXIDANT AND ANTIMICROBIAL ACTIVITIES OF PROPOLIS PRODUCED BY Frieseomelitta longipes AND Apis mellifera BEES. Quimica Nova, 2018, , .	0.3	6

CARLA PORTO

#	Article	IF	CITATIONS
19	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 2016, 34, 828-837.	17.5	2,802
20	Molecular cartography of the human skin surface in 3D. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2120-9.	7.1	288
21	Phytochemical Analysis of Pfaffia glomerata Inflorescences by LC-ESI-MS/MS. Molecules, 2014, 19, 15720-15734.	3.8	52
22	(R)-(-)-carvone and (1R, 4R)-trans-(+)-dihydrocarvone from poiretia latifolia vogel. Journal of the Brazilian Chemical Society, 2010, 21, 782-786.	0.6	19
23	Essential Oil of <i>Eugenia uniflora</i> L: an Industrial Perfumery Approach. Journal of Essential Oil Research, 2010, 22, 176-179.	2.7	17
24	Chemical Composition and Antimicrobial Activity of the Volatile Oil fromBaccharis articulate(Lam.) Pers Journal of Essential Oil Research, 2008, 20, 366-368.	2.7	12
25	Alkaloids from Melochia chamaedrys. Planta Medica, 2007, 73, 289-292.	1.3	9
26	Essential Oil ofPluchea quitocDc. (Asteraceae). Journal of Essential Oil Research, 2007, 19, 494-497.	2.7	8
27	Chemical composition and antimicrobial activity of the essential oil from Aeolanthus suaveolens Mart. ex Spreng. Quimica Nova, 2007, 30, 1923-1925.	0.3	17
28	Study on the antimicrobial activity of Hymatanthus sucuba. Fìtoterapìâ, 2006, 77, 50-53.	2.2	8
29	Antimicrobial activity of extractives of Solidago microglossa. Fìtoterapìâ, 2006, 77, 453-455.	2.2	22
30	Composition and antimicrobial activity of the essential oil from Aloysia sellowii. Journal of the Brazilian Chemical Society, 2005, 16, 1458-1462.	0.6	15
31	Essential Oil fromZanthoxylum hyemale. Planta Medica, 2005, 71, 759-763.	1.3	17
32	Quinoline Alkaloids, Coumarins and Volatile Constituents of Helietta longifoliata. Planta Medica, 2002, 68, 631-634.	1.3	21
33	Direct Incorporation of Ginger and Oregano Antioxidants in Canola Oil. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
34	Determination of Antibiotics Residues in Milk Using a QuEChERS Method Using Full Factorial Design and Liquid Chromatography-Tandem Mass Spectrometry. Journal of the Brazilian Chemical Society, 0, , .	0.6	2