
Michael P Terns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1595394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unique properties of spacer acquisition by the type III-A CRISPR-Cas system. Nucleic Acids Research, 2022, 50, 1562-1582.	14.5	8
2	Structural and biochemical characterization of in vivo assembled Lactococcus lactis CRISPR-Csm complex. Communications Biology, 2022, 5, 279.	4.4	9
3	Type III-A CRISPR systems as a versatile gene knockdown technology. Rna, 2022, 28, 1074-1088.	3.5	7
4	Allosteric control of type I-A CRISPR-Cas3 complexes and establishment as effective nucleic acid detection and human genome editing tools. Molecular Cell, 2022, 82, 2754-2768.e5.	9.7	23
5	New Type III CRISPR variant and programmable RNA targeting tool: Oh, thank heaven for Cas7-11. Molecular Cell, 2021, 81, 4354-4356.	9.7	11
6	A journey down to hell: new thermostable protein-tags for biotechnology at high temperatures. Extremophiles, 2020, 24, 81-91.	2.3	8
7	Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18, 67-83.	28.6	1,427
8	Primed CRISPR DNA uptake in Pyrococcus furiosus. Nucleic Acids Research, 2020, 48, 6120-6135.	14.5	20
9	Regulation of the RNA and DNA nuclease activities required for Pyrococcus furiosus Type III-B CRISPR–Cas immunity. Nucleic Acids Research, 2020, 48, 4418-4434.	14.5	34
10	The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems. RNA Biology, 2019, 16, 449-460.	3.1	68
11	CRISPR DNA elements controlling site-specific spacer integration and proper repeat length by a Type II CRISPR–Cas system. Nucleic Acids Research, 2019, 47, 8632-8648.	14.5	15
12	CRISPRÂrepeat sequences and relative spacing specify DNA integration by Pyrococcus furiosus Cas1 and Cas2. Nucleic Acids Research, 2019, 47, 7518-7531.	14.5	18
13	CRISPR RNA-guided DNA cleavage by reconstituted Type I-A immune effector complexes. Extremophiles, 2019, 23, 19-33.	2.3	14
14	Complete Genome Sequence of Industrial Dairy Strain Streptococcus thermophilus DGCC 7710. Genome Announcements, 2018, 6, .	0.8	22
15	CRISPR-Based Technologies: Impact of RNA-Targeting Systems. Molecular Cell, 2018, 72, 404-412.	9.7	131
16	Cas4 Nucleases Define the PAM, Length, and Orientation of DNA Fragments Integrated at CRISPR Loci. Molecular Cell, 2018, 70, 814-824.e6.	9.7	85
17	Visualization of Human Telomerase Localization by Fluorescence Microscopy Techniques. Methods in Molecular Biology, 2017, 1587, 113-125.	0.9	2
18	Role of free DNA ends and protospacer adjacent motifs for CRISPR DNA uptake in Pyrococcus furiosus. Nucleic Acids Research, 2017, 45, 11281-11294.	14.5	34

#	Article	IF	CITATIONS
19	Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex. Extremophiles, 2017, 21, 95-107.	2.3	21
20	Programmable type III-A CRISPR-Cas DNA targeting modules. PLoS ONE, 2017, 12, e0176221.	2.5	31
21	Phylogenomics of Cas4 family nucleases. BMC Evolutionary Biology, 2017, 17, 232.	3.2	61
22	CRISPR Outsourcing: Commissioning IHF for Site-Specific Integration of Foreign DNA at the CRISPR Array. Molecular Cell, 2016, 62, 803-804.	9.7	5
23	The CRISPR-associated Csx1 protein of <i>Pyrococcus furiosus</i> is an adenosine-specific endoribonuclease. Rna, 2016, 22, 216-224.	3.5	79
24	Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR–Cas system. Genes and Development, 2016, 30, 447-459.	5.9	212
25	Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Research, 2015, 43, 5120-5129.	14.5	202
26	Cas9 function and host genome sampling in Type II-A CRISPR–Cas adaptation. Genes and Development, 2015, 29, 356-361.	5.9	188
27	Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in <i>Streptococcus thermophilus</i> . Nucleic Acids Research, 2015, 43, 1749-1758.	14.5	97
28	Three CRISPR-Cas immune effector complexes coexist in <i>Pyrococcus furiosus</i> . Rna, 2015, 21, 1147-1158.	3.5	48
29	An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 2015, 13, 722-736.	28.6	2,081
30	DNA targeting by the type I-G and type I-A CRISPR–Cas systems of <i>Pyrococcus furiosus</i> . Nucleic Acids Research, 2015, 43, gkv1140.	14.5	38
31	Essential Structural and Functional Roles of the Cmr4 Subunit in RNA Cleavage by the Cmr CRISPR-Cas Complex. Cell Reports, 2014, 9, 1610-1617.	6.4	57
32	CRISPR-based technologies: prokaryotic defense weapons repurposed. Trends in Genetics, 2014, 30, 111-118.	6.7	92
33	The three major types of <scp>CRISPR</scp> â€ <scp>Cas</scp> systems function independently in <scp>CRISPR RNA</scp> biogenesis in <scp><i>S</i></scp> <i>treptococcus thermophilus</i> . Molecular Microbiology, 2014, 93, 98-112.	2.5	81
34	Target RNA capture and cleavage by the Cmr type III-B CRISPR–Cas effector complex. Genes and Development, 2014, 28, 2432-2443.	5.9	104
35	Structure of an RNA Silencing Complex of the CRISPR-Cas Immune System. Molecular Cell, 2013, 52, 146-152.	9.7	117
36	Structure of the Cmr2-Cmr3 Subcomplex of the Cmr RNA Silencing Complex. Structure, 2013, 21, 376-384.	3.3	42

3

#	Article	IF	CITATIONS
37	Programmable plasmid interference by the CRISPR-Cas system in <i><i>Thermococcus kodakarensis</i></i> . RNA Biology, 2013, 10, 828-840.	3.1	34
38	The RNA- and DNA-targeting CRISPR–Cas immune systems of <i>Pyrococcus furiosus</i> . Biochemical Society Transactions, 2013, 41, 1416-1421.	3.4	31
39	Essential Features and Rational Design of CRISPR RNAs that Function with the Cas RAMP Module Complex to Cleave RNAs. Molecular Cell, 2012, 45, 292-302.	9.7	275
40	Structure of the Cmr2 Subunit of the CRISPR-Cas RNA Silencing Complex. Structure, 2012, 20, 545-553.	3.3	69
41	The CRISPRâ€Cas system: small RNAâ€guided invader silencing in prokaryotes. FASEB Journal, 2012, 26, 353.3.	0.5	0
42	CRISPR-based adaptive immune systems. Current Opinion in Microbiology, 2011, 14, 321-327.	5.1	358
43	Processive and Distributive Extension of Human Telomeres by Telomerase under Homeostatic and Nonequilibrium Conditions. Molecular Cell, 2011, 42, 297-307.	9.7	77
44	Interaction of the Cas6 Riboendonuclease with CRISPR RNAs: Recognition and Cleavage. Structure, 2011, 19, 257-264.	3.3	154
45	A Cajal body-independent pathway for telomerase trafficking in mice. Experimental Cell Research, 2010, 316, 2797-2809.	2.6	25
46	Telomerase trafficking and assembly in <i>Xenopus</i> oocytes. Journal of Cell Science, 2010, 123, 2464-2472.	2.0	6
47	TIN2-Tethered TPP1 Recruits Human Telomerase to Telomeres <i>In Vivo</i> . Molecular and Cellular Biology, 2010, 30, 2971-2982.	2.3	206
48	Binding and cleavage of CRISPR RNA by Cas6. Rna, 2010, 16, 2181-2188.	3.5	137
49	Structural Basis for Substrate Placement by an Archaeal Box C/D Ribonucleoprotein Particle. Molecular Cell, 2010, 39, 939-949.	9.7	59
50	RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex. Cell, 2009, 139, 945-956.	28.9	919
51	A Human Telomerase Holoenzyme Protein Required for Cajal Body Localization and Telomere Synthesis. Science, 2009, 323, 644-648.	12.6	451
52	Prokaryotic silencing (psi)RNAs in <i>Pyrococcus furiosus</i> . Rna, 2008, 14, 2572-2579.	3.5	212
53	Telomerase Reverse Transcriptase Is Required for the Localization of Telomerase RNA to Cajal Bodies and Telomeres in Human Cancer Cells. Molecular Biology of the Cell, 2008, 19, 3793-3800.	2.1	65
54	Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes and Development, 2008, 22, 3489-3496.	5.9	495

#	Article	IF	CITATIONS
55	Dynamic interactions within sub-complexes of the H/ACA pseudouridylation guide RNP. Nucleic Acids Research, 2007, 35, 6196-6206.	14.5	23
56	Alternative Conformations of the Archaeal Nop56/58-Fibrillarin Complex Imply Flexibility in Box C/D RNPs. Journal of Molecular Biology, 2007, 371, 1141-1150.	4.2	36
57	Human Telomerase RNA Accumulation in Cajal Bodies Facilitates Telomerase Recruitment to Telomeres and Telomere Elongation. Molecular Cell, 2007, 27, 882-889.	9.7	161
58	Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature Reviews Molecular Cell Biology, 2007, 8, 209-220.	37.0	683
59	Crystal Structure of a Cbf5-Nop10-Gar1 Complex and Implications in RNA-Guided Pseudouridylation and Dyskeratosis Congenita. Molecular Cell, 2006, 21, 249-260.	9.7	152
60	Cell Cycle-regulated Trafficking of Human Telomerase to Telomeres. Molecular Biology of the Cell, 2006, 17, 955-965.	2.1	255
61	RNA-Guided RNA modification: functional organization of the archaeal H/ACA RNP. Genes and Development, 2005, 19, 1238-1248.	5.9	116
62	Circular box C/D RNAs in Pyrococcus furiosus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14097-14101.	7.1	46
63	Telomerase RNA Accumulates in Cajal Bodies in Human Cancer Cells. Molecular Biology of the Cell, 2004, 15, 81-90.	2.1	180
64	Components of U3 snoRNA-containing Complexes Shuttle between Nuclei and the Cytoplasm and Differentially Localize in Nucleoli: Implications for Assembly and Function. Molecular Biology of the Cell, 2004, 15, 281-293.	2.1	31
65	Structure determination of fibrillarin from the hyperthermophilic archaeon Pyrococcus furiosus. Biochemical and Biophysical Research Communications, 2004, 315, 726-732.	2.1	19
66	The Nucleolar Localization Domain of the Catalytic Subunit of Human Telomerase. Journal of Biological Chemistry, 2002, 277, 24764-24770.	3.4	110
67	Determinants of the Interaction of the Spinal Muscular Atrophy Disease Protein SMN with the Dimethylarginine-modified Box H/ACA Small Nucleolar Ribonucleoprotein GAR1. Journal of Biological Chemistry, 2002, 277, 48087-48093.	3.4	53
68	Archaeal Guide RNAs Function in rRNA Modification in the Eukaryotic Nucleus. Current Biology, 2002, 12, 199-203.	3.9	19
69	Site-specific cross-linking analyses reveal an asymmetric protein distribution for a box C/D snoRNP. EMBO Journal, 2002, 21, 3816-3828.	7.8	96
70	An H/ACA guide RNA directs U2 pseudouridylation at two different sites in the branchpoint recognition region in Xenopus oocytes. Rna, 2002, 8, 1515-25.	3.5	45
71	Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expression, 2002, 10, 17-39.	1.2	135
72	Macromolecular complexes: SMN — the master assembler. Current Biology, 2001, 11, R862-R864.	3.9	97

#	Article	IF	CITATIONS
73	Internal Modification of U2 Small Nuclear (Snrna) Occurs in Nucleoli of Xenopus Oocytes. Journal of Cell Biology, 2001, 152, 1279-1288.	5.2	57
74	Direct Interaction of the Spinal Muscular Atrophy Disease Protein SMN with the Small Nucleolar RNA-associated Protein Fibrillarin. Journal of Biological Chemistry, 2001, 276, 38645-38651.	3.4	147
75	Role of the Box C/D Motif in Localization of Small Nucleolar RNAs to Coiled Bodies and Nucleoli. Molecular Biology of the Cell, 1999, 10, 2131-2147.	2.1	129
76	Nuclear Retention Elements of U3 Small Nucleolar RNA. Molecular and Cellular Biology, 1999, 19, 8412-8421.	2.3	38
77	Chapter 25 Nuclear Transport of RNAs in Microinjected Xenopus Oocytes. Methods in Cell Biology, 1997, 53, 559-589.	1.1	23