List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1595025/publications.pdf Version: 2024-02-01

Ροβέρτ ΜλλδΫ

#	Article	IF	CITATIONS
1	Deformation response of ferrite and martensite in a dual-phase steel. Acta Materialia, 2014, 62, 197-211.	7.9	254
2	Shearâ€Band Dynamics in Metallic Glasses. Advanced Functional Materials, 2015, 25, 2353-2368.	14.9	190
3	Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Materialia, 2011, 59, 3205-3213.	7.9	181
4	Probing Shear-Band Initiation in Metallic Glasses. Physical Review Letters, 2011, 107, 185502.	7.8	135
5	On the Microstructure of Nanoporous Gold: An X-ray Diffraction Study. Nano Letters, 2009, 9, 1158-1163.	9.1	132
6	Micro-plasticity and recent insights from intermittent and small-scale plasticity. Acta Materialia, 2018, 143, 338-363.	7.9	119
7	Smaller is stronger: The effect of strain hardening. Acta Materialia, 2009, 57, 5996-6005.	7.9	115
8	Stick–slip behavior of serrated flow during inhomogeneous deformation of bulk metallic glasses. Acta Materialia, 2010, 58, 3742-3750.	7.9	110
9	Stick-slip dynamics and recent insights into shear banding in metallic glasses. Journal of Materials Research, 2011, 26, 1453-1463.	2.6	105
10	Time-Resolved Laue Diffraction of Deforming Micropillars. Physical Review Letters, 2007, 99, 145505.	7.8	104
11	Shear-band thickness and shear-band cavities in a Zr-based metallic glass. Acta Materialia, 2017, 140, 206-216.	7.9	96
12	Long range stress fields and cavitation along a shear band in a metallic glass: The local origin of fracture. Acta Materialia, 2015, 98, 94-102.	7.9	93
13	A single shear band in a metallic glass: Local core and wide soft zone. Applied Physics Letters, 2014, 105,	3.3	85
14	From Micro- to Macroplasticity. Advanced Materials, 2006, 18, 1545-1548.	21.0	79
15	Crystal rotation in Cu single crystal micropillars: <i>In situ</i> Laue and electron backscatter diffraction. Applied Physics Letters, 2008, 92, .	3.3	77
16	Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass. Acta Materialia, 2017, 138, 111-118.	7.9	76
17	Defect structure in micropillars using x-ray microdiffraction. Applied Physics Letters, 2006, 89, 151905.	3.3	74
18	Room Temperature Homogeneous Ductility of Micrometerâ€Sized Metallic Glass. Advanced Materials, 2014, 26, 5715-5721.	21.0	68

#	Article	IF	CITATIONS
19	Gamma relaxation in bulk metallic glasses. Scripta Materialia, 2017, 137, 5-8.	5.2	66
20	Temperature-dependent shear band dynamics in a Zr-based bulk metallic glass. Applied Physics Letters, 2010, 96, .	3.3	65
21	Slip statistics of dislocation avalanches under different loading modes. Physical Review E, 2015, 91, 042403.	2.1	63
22	Ultrahigh Strength of Dislocationâ€Free Ni ₃ Al Nanocubes. Small, 2012, 8, 1869-1875.	10.0	61
23	Single shear-band plasticity in a bulk metallic glass at cryogenic temperatures. Scripta Materialia, 2012, 66, 231-234.	5.2	57
24	In-situ characterization of the dislocation-structure evolution in Ni micro-pillars. Acta Materialia, 2012, 60, 1027-1037.	7.9	56
25	The Boson peak of model glass systems and its relation to atomic structure. European Physical Journal B, 2012, 85, 1.	1.5	52
26	Shear-band arrest and stress overshoots during inhomogeneous flow in a metallic glass. Applied Physics Letters, 2012, 100, .	3.3	52
27	Elastic Fluctuations and Structural Heterogeneities in Metallic Glasses. Advanced Functional Materials, 2018, 28, 1800388.	14.9	48
28	On the initial microstructure of metallic micropillars. Scripta Materialia, 2008, 59, 471-474.	5.2	46
29	Shear banding leads to accelerated aging dynamics in a metallic glass. Physical Review B, 2018, 97, .	3.2	43
30	Shapes and velocity relaxation of dislocation avalanches in Au and Nb microcrystals. Acta Materialia, 2018, 152, 86-95.	7.9	39
31	Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass. Acta Materialia, 2020, 196, 723-732.	7.9	38
32	In situ Laue diffraction of metallic micropillars. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 524, 40-45.	5.6	37
33	On the plasticity of small-scale nickel–titanium shape memory alloys. Scripta Materialia, 2010, 62, 492-495.	5.2	37
34	Small-scale plasticity: Insights into dislocation avalanche velocities. Scripta Materialia, 2013, 69, 586-589.	5.2	37
35	Energy Storage in Metallic Glasses via Flash Annealing. Advanced Functional Materials, 2018, 28, 1805385.	14.9	34
36	Unified Criterion for Temperature-Induced and Strain-Driven Glass Transitions in Metallic Glass. Physical Review Letters, 2015, 115, 135701.	7.8	33

#	Article	IF	CITATIONS
37	Rate-dependent shear-band initiation in a metallic glass. Applied Physics Letters, 2015, 106, .	3.3	33
38	Fatigue deformation of microsized metallic glasses. Scripta Materialia, 2013, 68, 773-776.	5.2	32
39	Strain induced fragility transition in metallic glass. Nature Communications, 2015, 6, 7179.	12.8	32
40	A strong micropillar containing a low angle grain boundary. Applied Physics Letters, 2007, 91, .	3.3	31
41	Micro-plasticity and intermittent dislocation activity in a simplified micro-structural model. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 035007.	2.0	29
42	Compositional dependence of shear-band dynamics in the Zr–Cu–Al bulk metallic glass system. Applied Physics Letters, 2014, 104, 101910.	3.3	28
43	Dynamic properties of major shear bands in Zr–Cu–Al bulk metallic glasses. Acta Materialia, 2015, 96, 428-436.	7.9	28
44	Stress breaks universal aging behavior in a metallic glass. Nature Communications, 2019, 10, 5006.	12.8	28
45	Independence of Slip Velocities on Applied Stress in Small Crystals. Small, 2015, 11, 341-351.	10.0	26
46	Thermal processing and enthalpy storage of a binary amorphous solid: A molecular dynamics study. Journal of Materials Research, 2017, 32, 2668-2679.	2.6	26
47	Thermally-activated stress relaxation in a model amorphous solid and the formation of a system-spanning shear event. Acta Materialia, 2018, 143, 205-213.	7.9	25
48	Nontrivial scaling exponents of dislocation avalanches in microplasticity. Physical Review Materials, 2018, 2, .	2.4	25
49	Linking high- and low-temperature plasticity in bulk metallic glasses: thermal activation, extreme value statistics and kinetic freezing. Philosophical Magazine, 2013, 93, 4232-4263.	1.6	22
50	Spatiotemporal slip dynamics during deformation of gold micro-crystals. Acta Materialia, 2017, 122, 109-119.	7.9	22
51	Emergent structural length scales in a model binary glass - The micro-second molecular dynamics time-scale regime. Journal of Alloys and Compounds, 2020, 821, 153209.	5.5	22
52	Temperature rise from fracture in a Zr-based metallic glass. Applied Physics Letters, 2018, 112, .	3.3	19
53	Shear-band cavities and strain hardening in a metallic glass revealed with phase-contrast x-ray tomography. Scripta Materialia, 2019, 170, 29-33.	5.2	19
54	Linking high- and low-temperature plasticity in bulk metallic glasses II: use of a log-normal barrier energy distribution and a mean-field description of high-temperature plasticity. Philosophical Magazine, 2014, 94, 2776-2803.	1.6	17

#	Article	IF	CITATIONS
55	Shear-band structure and chemistry in a Zr-based metallic glass probed with nano-beam x-ray fluorescence and transmission electron microscopy. Scripta Materialia, 2019, 169, 23-27.	5.2	17
56	Strain-dependent shear-band structure in a Zr-based bulk metallic glass. Scripta Materialia, 2021, 190, 75-79.	5.2	17
57	Flaw-insensitive fracture of a micrometer-sized brittle metallic glass. Acta Materialia, 2021, 218, 117219.	7.9	17
58	The stress statistics of the first pop-in or discrete plastic event in crystal plasticity. Journal of Applied Physics, 2016, 120, .	2.5	16
59	Fast Slip Velocity in a High-Entropy Alloy. Jom, 2018, 70, 1088-1093.	1.9	16
60	Micro-plasticity in a fragile model binary glass. Acta Materialia, 2021, 209, 116771.	7.9	16
61	A probabilistic explanation for the size-effect in crystal plasticity. Philosophical Magazine, 2015, 95, 1829-1844.	1.6	15
62	Influence of hydrogen on the growth of FePt thin films. Journal of Applied Physics, 2006, 100, 073910.	2.5	14
63	Avalanche statistics and the intermittent-to-smooth transition in microplasticity. Physical Review Materials, 2019, 3, .	2.4	14
64	Thermal-activation model for freezing and the elastic robustness of bulk metallic glasses. Physical Review B, 2011, 84, .	3.2	12
65	Crystal size effect in two dimensions – Influence of size and shape. Scripta Materialia, 2015, 102, 27-30.	5.2	12
66	Effects of orientation and pre-deformation on velocity profiles of dislocation avalanches in gold microcrystals. European Physical Journal B, 2019, 92, 1.	1.5	12
67	Universal power-law strengthening in metals?. Scripta Materialia, 2015, 109, 19-22.	5.2	10
68	Evidence of room-temperature shear-deformation in a Cu-Al intermetallic. Scripta Materialia, 2021, 190, 126-130.	5.2	10
69	Scale-dependent pop-ins in nanoindentation and scale-free plastic fluctuations in microcompression. Journal of Materials Research, 2020, 35, 196-205.	2.6	9
70	Mild-to-wild plastic transition is governed by athermal screw dislocation slip in bcc Nb. Nature Communications, 2022, 13, 1010.	12.8	9
71	Beyond Serrated Flow in Bulk Metallic Glasses: What Comes Next?. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5597-5605.	2.2	8
72	Early stages of liquid-metal embrittlement in an advanced high-strength steel. Materials Today Advances, 2022, 13, 100196.	5.2	7

#	Article	IF	CITATIONS
73	Local volume as a robust structural measure and its connection to icosahedral content in a model binary amorphous system. Materialia, 2018, 3, 97-106.	2.7	6
74	Microstructure and nanomechanical behavior of sputtered CuNb thin films. Intermetallics, 2021, 136, 107249.	3.9	6
75	Critical stress statistics and a fold catastrophe in intermittent crystal plasticity. Physical Review E, 2016, 94, 033001.	2.1	5
76	Microstructural signatures of dislocation avalanches in a high-entropy alloy. Physical Review Materials, 2021, 5, .	2.4	4
77	Viscosity and transport in a model fragile metallic glass. Physical Review Materials, 2021, 5, .	2.4	4
78	Applied-force oscillations in avalanche dynamics. Physical Review E, 2020, 101, 053003.	2.1	3
79	The Role of Disorder and the Elastic Robustness of Bulk Metallic Glasses. Materials Research Society Symposia Proceedings, 2012, 1520, 1.	0.1	2
80	Split-vacancy defect complexes of oxygen in hcp and fcc cobalt. Physical Review Materials, 2020, 4, .	2.4	1
81	<i>IN SITU</i> TIME RESOLVED LAUE DIFFRACTION DURING MICRO-COMPRESSION EXPERIMENTS. Advances in Synchrotron Radiation, 2008, 01, 151-157.	0.0	0
82	<i>In situ</i> thermal annealing transmission electron microscopy of irradiation induced Fe nanoparticle precipitation in Fe–Si alloy. Journal of Applied Physics, 2022, 131, 164902.	2.5	0