Li-Fang Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1593742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of autophagy related genes in peripheral blood cells in Parkinson's disease. Neuroscience Letters, 2021, 762, 136166.	2.1	1
2	AMPK S-sulfuration contributes to H2S donors-induced AMPK phosphorylation and autophagy activation in dopaminergic cells. Neurochemistry International, 2021, 150, 105187.	3.8	10
3	αâ€synuclein suppresses microglial autophagy and promotes neurodegeneration in a mouse model of Parkinson's disease. Aging Cell, 2021, 20, e13522.	6.7	55
4	Insights into the Mechanism of Thiol-Triggered COS/H ₂ S Release from <i>N</i> -Dithiasuccinoyl Amines. Journal of Organic Chemistry, 2020, 85, 8352-8359.	3.2	15
5	BMAL1 regulation of microgliaâ€mediated neuroinflammation in MPTPâ€induced Parkinson's disease mouse model. FASEB Journal, 2020, 34, 6570-6581.	0.5	54
6	Nicotine improved the olfactory impairment in MPTP-induced mouse model of Parkinson's disease. NeuroToxicology, 2019, 73, 175-182.	3.0	19
7	Epigenetic Regulation of Autophagy. Advances in Experimental Medicine and Biology, 2019, 1206, 221-236.	1.6	31
8	Impaired CBS-H2S signaling axis contributes to MPTP-induced neurodegeneration in a mouse model of Parkinson's disease. Brain, Behavior, and Immunity, 2018, 67, 77-90.	4.1	45
9	A Critical Role of Autophagy in Regulating Microglia Polarization in Neurodegeneration. Frontiers in Aging Neuroscience, 2018, 10, 378.	3.4	115
10	Disruption of the Circadian Clock Alters Antioxidative Defense via the SIRT1-BMAL1 Pathway in 6-OHDA-Induced Models of Parkinson's Disease. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-11.	4.0	54
11	Parkinson's disease-like motor and non-motor symptoms in rotenone-treated zebrafish. NeuroToxicology, 2017, 58, 103-109.	3.0	76
12	A New Perspective for Parkinson's Disease: Circadian Rhythm. Neuroscience Bulletin, 2017, 33, 62-72.	2.9	62
13	Urate promotes SNCA/α-synuclein clearance via regulating mTOR-dependent macroautophagy. Experimental Neurology, 2017, 297, 138-147.	4.1	30
14	A role of BAG3 in regulating SNCA/α-synuclein clearance via selective macroautophagy. Neurobiology of Aging, 2017, 60, 104-115.	3.1	40
15	Long-term Levodopa Treatment Accelerates the Circadian Rhythm Dysfunction in a 6-hydroxydopamine Rat Model of Parkinson's Disease. Chinese Medical Journal, 2017, 130, 1085-1092.	2.3	24
16	GYY4137, an H2S Slow-Releasing Donor, Prevents Nitrative Stress and α-Synuclein Nitration in an MPTP Mouse Model of Parkinson's Disease. Frontiers in Pharmacology, 2017, 8, 741.	3.5	31
17	Neuroprotective Effects of Paeoniflorin on 6-OHDA-Lesioned Rat Model of Parkinson's Disease. Neurochemical Research, 2016, 41, 2923-2936.	3.3	40
18	Vesicular monoamine transporter 2 (Vmat2) knockdown elicits anxiety-like behavior in zebrafish. Biochemical and Biophysical Research Communications, 2016, 470, 792-797.	2.1	28

LI-FANG HU

#	Article	IF	CITATIONS
19	Hydrogen sulfide attenuates ferric chloride-induced arterial thrombosis in rats. Free Radical Research, 2016, 50, 654-665.	3.3	11
20	DNA methylation in cystathionine-γ-lyase (CSE) gene promoter induced by ox-LDL in macrophages and in apoE knockout mice. Biochemical and Biophysical Research Communications, 2016, 469, 776-782.	2.1	35
21	Homocysteine Triggers Inflammatory Responses in Macrophages through Inhibiting CSE-H2S Signaling via DNA Hypermethylation of CSE Promoter. International Journal of Molecular Sciences, 2015, 16, 12560-12577.	4.1	101
22	Hydrogen Sulfide: A Therapeutic Candidate for Fibrotic Disease?. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-10.	4.0	24
23	TNF compromises lysosome acidification and reduces α-synuclein degradation via autophagy in dopaminergic cells. Experimental Neurology, 2015, 271, 112-121.	4.1	55
24	A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy, 2015, 11, 2057-2073.	9.1	72
25	Nrf2 Signaling Contributes to the Neuroprotective Effects of Urate against 6-OHDA Toxicity. PLoS ONE, 2014, 9, e100286.	2.5	47
26	Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy. Kidney International, 2014, 85, 1318-1329.	5.2	103
27	Statins upregulate cystathionine Î ³ -lyase transcription and H2S generation via activating Akt signaling in macrophage. Pharmacological Research, 2014, 87, 18-25.	7.1	37
28	Downregulation of cystathionine β-synthase/hydrogen sulfide contributes to rotenone-induced microglia polarization toward M1 type. Biochemical and Biophysical Research Communications, 2014, 451, 239-245.	2.1	39
29	Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage. Cellular Signalling, 2013, 25, 2255-2262.	3.6	96
30	Alteration of Dynein Function Affects α-Synuclein Degradation via the Autophagosome-Lysosome Pathway. International Journal of Molecular Sciences, 2013, 14, 24242-24254.	4.1	18
31	Elevated homocysteine levels in levodopa-treated idiopathic Parkinson's disease: a meta-analysis. Acta Neurologica Scandinavica, 2013, 128, 73-82.	2.1	57
32	Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacologica Sinica, 2013, 34, 625-635.	6.1	286
33	Therapeutic Effect of Hydrogen Sulfide-Releasing L-Dopa Derivative ACS84 on 6-OHDA-Induced Parkinson's Disease Rat Model. PLoS ONE, 2013, 8, e60200.	2.5	56
34	Autophagic Impairment Contributes to Systemic Inflammation-Induced Dopaminergic Neuron Loss in the Midbrain. PLoS ONE, 2013, 8, e70472.	2.5	30
35	Neuroprotection by urate on 6â€< scp>OHDAâ€ŀesioned rat model of Parkinson's disease: linking to Akt/ <scp>GSK</scp> 3î² signaling pathway. Journal of Neurochemistry, 2012, 123, 876-885.	3.9	93
36	Hydrogen Sulfide in the Mammalian Cardiovascular System. Antioxidants and Redox Signaling, 2012, 17, 141-185.	5.4	225

LI-FANG HU

#	Article	IF	CITATIONS
37	Hydrogen Sulfide: Neurophysiology and Neuropathology. Antioxidants and Redox Signaling, 2011, 15, 405-419.	5.4	182
38	HDAC6 regulates aggresomeâ€autophagy degradation pathway of αâ€synuclein in response to MPP ⁺ â€induced stress. Journal of Neurochemistry, 2011, 117, 112-120.	3.9	54
39	Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage—implications for the treatment of osteoporosis. Free Radical Biology and Medicine, 2011, 50, 1314-1323.	2.9	157
40	ASICs mediate the modulatory effect by paeoniflorin on alpha-synuclein autophagic degradation. Brain Research, 2011, 1396, 77-87.	2.2	65
41	Hydrogen Sulfide Regulates Na ⁺ /H ⁺ Exchanger Activity via Stimulation of Phosphoinositide 3-Kinase/Akt and Protein Kinase G Pathways. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 726-735.	2.5	24
42	Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models. Aging Cell, 2010, 9, 135-146.	6.7	311
43	Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovascular Research, 2010, 88, 482-491.	3.8	118
44	Hydrogen sulfide regulates intracellular pH in rat primary cultured glia cells. Neuroscience Research, 2010, 66, 92-98.	1.9	44
45	Hydrogen Sulfide Inhibits Rotenone-Induced Apoptosis via Preservation of Mitochondrial Function. Molecular Pharmacology, 2009, 75, 27-34.	2.3	215
46	Cyclooxygenase-2 mediates the delayed cardioprotection induced by hydrogen sulfide preconditioning in isolated rat cardiomyocytes. Pflugers Archiv European Journal of Physiology, 2008, 455, 971-978.	2.8	52
47	Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake. Free Radical Biology and Medicine, 2008, 45, 1705-1713.	2.9	170
48	H ₂ S preconditioning-induced PKC activation regulates intracellular calcium handling in rat cardiomyocytes. American Journal of Physiology - Cell Physiology, 2008, 294, C169-C177.	4.6	106
49	Hydrogen sulfide attenuates lipopolysaccharideâ€induced inflammation by inhibition of p38 mitogenâ€activated protein kinase in microglia. Journal of Neurochemistry, 2007, 100, 1121-1128.	3.9	278
50	Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia, 2006, 54, 116-124.	4.9	138
51	Enhancement of glutamate uptake mediates the neuroprotection exerted by activating group II or III metabotropic glutamate receptors on astrocytes. Journal of Neurochemistry, 2005, 92, 948-961.	3.9	100
52	ATP-sensitive potassium channel opener iptakalim protected against the cytotoxicity of MPP+ on SH-SY5Y cells by decreasing extracellular glutamate level. Journal of Neurochemistry, 2005, 94, 1570-1579.	3.9	48