Aaron J Wirsing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1593637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predators reduce niche overlap between sympatric prey. Oikos, 2022, 2022, .	2.7	2
2	Using camera traps to estimate density of snowshoe hare (<i>Lepus americanus</i>): a keystone boreal forest herbivore. Journal of Mammalogy, 2022, 103, 693-710.	1.3	2
3	Optimal barbed wire height for brown bear hair sample collection. Ursus, 2022, 2022, .	0.5	2
4	Predator niche overlap and partitioning and potential interactions in the mountains of Central Asia. Journal of Mammalogy, 2022, 103, 1019-1029.	1.3	8
5	Foreword to the Special Issue on â€~The rapidly expanding role of drones as a tool for wildlife research'. Wildlife Research, 2022, 49, i-v.	1.4	7
6	Political affiliation predicts public attitudes toward gray wolf (<i>Canis lupus</i>) conservation and management. Conservation Science and Practice, 2021, 3, e387.	2.0	16
7	Loss of predation risk from apex predators can exacerbate marine tropicalization caused by extreme climatic events. Journal of Animal Ecology, 2021, 90, 2041-2052.	2.8	16
8	Scavenging Effects of Large Canids. Integrative and Comparative Biology, 2021, 61, 117-131.	2.0	5
9	Public willingness to pay for gray wolf conservation that could support a rancher-led wolf-livestock coexistence program. Biological Conservation, 2021, 260, 109226.	4.1	11
10	Predation landscapes influence migratory prey ecology and evolution. Trends in Ecology and Evolution, 2021, 36, 737-749.	8.7	23
11	Broaden your horizon: The use of remotely sensed data for modeling populations of forest species at landscape scales. Forest Ecology and Management, 2021, 500, 119640.	3.2	2
12	The context dependence of nonâ \in consumptive predator effects. Ecology Letters, 2021, 24, 113-129.	6.4	80
13	Prey Foraging Behavior After Predator Introduction Is Driven by Resource Knowledge and Exploratory Tendency. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	5
14	Stable Isotopes Reveal Variation in Consumption of Pacific Salmon by Brown Bears, Despite Ready Access in Small Streams. Journal of Fish and Wildlife Management, 2021, 12, 40-49.	0.9	3
15	Managing salmon for wildlife: Do fisheries limit salmon consumption by bears in small Alaskan streams?. Ecological Applications, 2020, 30, e02061.	3.8	5
16	Global status and conservation potential of reef sharks. Nature, 2020, 583, 801-806.	27.8	176
17	Using unmanned aerial vehicles and machine learning to improve sea cucumber density estimation in shallow habitats. ICES Journal of Marine Science, 2020, 77, 2882-2889.	2.5	6
18	Optimizing Selection of Brown Bear Hair for Noninvasive Genetic Analysis. Wildlife Society Bulletin, 2020, 44, 94-100.	1.6	4

#	Article	IF	CITATIONS
19	Do brown bears Ursus arctos avoid barbed wires deployed to obtain hair samples? A videographic assessment. Wildlife Biology, 2020, 2020, .	1.4	6
20	Restriction of anthropogenic foods alters a top predator's diet and intraspecific interactions. Journal of Mammalogy, 2019, 100, 1522-1532.	1.3	8
21	Identifying predators from saliva at kill sites with limited remains. Wildlife Society Bulletin, 2019, 43, 546-557.	1.6	5
22	Mesopredators change temporal activity in response to a recolonizing apex predator. Behavioral Ecology, 2019, 30, 1324-1335.	2.2	33
23	Indirect legacy effects of an extreme climatic event on a marine megafaunal community. Ecological Monographs, 2019, 89, e01365.	5.4	47
24	Effects of urbanization on cougar foraging ecology along the wildland–urban gradient of western Washington. Ecosphere, 2019, 10, e02605.	2.2	14
25	Habitat use of sympatric prey suggests divergent anti-predator responses to recolonizing gray wolves. Oecologia, 2019, 189, 487-500.	2.0	22
26	Asymmetric crossâ€border protection of peripheral transboundary species. Conservation Letters, 2018, 11, e12430.	5.7	26
27	Population responses of common ravens to reintroduced gray wolves. Ecology and Evolution, 2018, 8, 11158-11168.	1.9	7
28	Alaskan brown bears (<i>Ursus arctos</i>) aggregate and display fidelity to foraging neighborhoods while preying on Pacific salmon along small streams. Ecology and Evolution, 2018, 8, 9048-9061.	1.9	48
29	Reply to Pincheira-Donoso and Hodgson: Both the largest and smallest vertebrates have elevated extinction risk. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5847-E5848.	7.1	ο
30	Making a New Dog?. BioScience, 2017, 67, 374-381.	4.9	27
31	The global impacts of domestic dogs on threatened vertebrates. Biological Conservation, 2017, 210, 56-59.	4.1	188
32	Diverse foraging opportunities drive the functional response of local and landscape-scale bear predation on Pacific salmon. Oecologia, 2017, 183, 415-429.	2.0	32
33	Extinction risk is most acute for the world's largest and smallest vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10678-10683.	7.1	243
34	Reply to Kalinkat et al.: Smallest terrestrial vertebrates are highly imperiled. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10265-E10265.	7.1	2
35	Food habits of the world's grey wolves. Mammal Review, 2016, 46, 255-269.	4.8	153
36	Saving the World's Terrestrial Megafauna. BioScience, 2016, 66, 807-812.	4.9	168

#	Article	IF	CITATIONS
37	The role of traditional beliefs in conservation of herpetofauna in Banten, Indonesia. Oryx, 2016, 50, 296-301.	1.0	18
38	Theoretical impacts of habitat loss and generalist predation on predator–prey cycles. Ecological Modelling, 2016, 327, 85-94.	2.5	11
39	Resolving the value of the dingo in ecological restoration. Restoration Ecology, 2015, 23, 201-208.	2.9	67
40	The ecological effects of providing resource subsidies to predators. Global Ecology and Biogeography, 2015, 24, 1-11.	5.8	264
41	Seagrasses in the age of sea turtle conservation and shark overfishing. Frontiers in Marine Science, 2014, 1, .	2.5	115
42	Complementary use of motion-activated cameras and unbaited wire snares for DNA sampling reveals diel and seasonal activity patterns of brown bears (<i>Ursus arctos</i>) foraging on adult sockeye salmon (<i>Oncorhynchus nerka</i>). Canadian Journal of Zoology, 2014, 92, 893-903.	1.0	20
43	Crossâ€fertilizing aquatic and terrestrial research to understand predator risk effects. Wiley Interdisciplinary Reviews: Water, 2014, 1, 439-448.	6.5	3
44	Accounting for individual behavioural variation in studies of habitat selection. Journal of Animal Ecology, 2014, 83, 319-321.	2.8	4
45	Status and Ecological Effects of the World's Largest Carnivores. Science, 2014, 343, 1241484.	12.6	2,390
46	Towards a cohesive, holistic view of top predation: a definition, synthesis and perspective. Oikos, 2014, 123, 1234-1243.	2.7	50
47	Precommercial forest thinning alters abundance but not survival of snowshoe hares. Journal of Wildlife Management, 2013, 77, 84-92.	1.8	10
48	Patterns of topâ€down control in a seagrass ecosystem: could a roving apex predator induce a behaviourâ€mediated trophic cascade?. Journal of Animal Ecology, 2013, 82, 1192-1202.	2.8	153
49	Habitat quality and population density drive occupancy dynamics of snowshoe hare in variegated landscapes. Ecography, 2013, 36, 610-621.	4.5	21
50	Widespread mesopredator effects after wolf extirpation. Biological Conservation, 2013, 160, 70-79.	4.1	125
51	Do measures of plant intake and digestibility from captive feeding trials align with foraging patterns of free-ranging snowshoe hares?. Wildlife Research, 2013, 40, 349.	1.4	9
52	Wolves and lynx: Plausible ideas make for testable hypotheses. Wildlife Society Bulletin, 2012, 36, 572-577.	1.6	3
53	Complex effects of site preparation and harvest on snowshoe hare abundance across a patchy forest landscape. Forest Ecology and Management, 2012, 280, 132-139.	3.2	16
54	Behavioural transition probabilities in dugongs change with habitat and predator presence: implications for sirenian conservation. Marine and Freshwater Research, 2012, 63, 1069.	1.3	13

#	Article	IF	CITATIONS
55	Large-scale movement patterns of male loggerhead sea turtles (Caretta caretta) in Shark Bay, Australia. Marine and Freshwater Research, 2012, 63, 1108.	1.3	2
56	Incidental nest predation in freshwater turtles: inter- and intraspecific differences in vulnerability are explained by relative crypsis. Oecologia, 2012, 168, 977-988.	2.0	24
57	A comparison of shark and wolf research reveals similar behavioral responses by prey. Frontiers in Ecology and the Environment, 2011, 9, 335-341.	4.0	90
58	Predatorâ€induced modifications to diving behavior vary with foraging mode. Oikos, 2011, 120, 1005-1012.	2.7	11
59	Can restoring wolves aid in lynx recovery?. Wildlife Society Bulletin, 2011, 35, 514-518.	1.6	21
60	Spatial responses to predators vary with prey escape mode. Animal Behaviour, 2010, 79, 531-537.	1.9	101
61	Towards a predictive framework for predator risk effects: the interaction of landscape features and prey escape tactics. Journal of Animal Ecology, 2009, 78, 556-562.	2.8	188
62	Physical factors influencing the distribution of a top predator in a subtropical oligotrophic estuary. Limnology and Oceanography, 2009, 54, 472-482.	3.1	89
63	Seascapes of fear: evaluating sublethal predator effects experienced and generated by marine mammals. Marine Mammal Science, 2008, 24, 1-15.	1.8	161
64	A review of lethal and non-lethal effects of predators on adult marine turtles. Journal of Experimental Marine Biology and Ecology, 2008, 356, 43-51.	1.5	118
65	Predicting ecological consequences of marine top predator declines. Trends in Ecology and Evolution, 2008, 23, 202-210.	8.7	1,032
66	Speed and Maneuverability of Adult Loggerhead Turtles (Caretta caretta) under Simulated Predatory Attack: Do The Sexes Differ?. Journal of Herpetology, 2008, 42, 411-413.	0.5	7
67	Behavioral Indicators in Marine Conservation: Lessons from a Pristine Seagrass Ecosystem. Israel Journal of Ecology and Evolution, 2007, 53, 355-370.	0.6	28
68	State-dependent risk-taking by green sea turtles mediates top-down effects of tiger shark intimidation in a marine ecosystem. Journal of Animal Ecology, 2007, 76, 837-844.	2.8	273
69	Living on the edge: dugongs prefer to forage in microhabitats that allow escape from rather than avoidance of predators. Animal Behaviour, 2007, 74, 93-101.	1.9	116
70	Can you dig it? Use of excavation, a risky foraging tactic, by dugongs is sensitive to predation danger. Animal Behaviour, 2007, 74, 1085-1091.	1.9	42
71	Can environmental heterogeneity explain individual foraging variation in wild bottlenose dolphins (Tursiops sp.)?. Behavioral Ecology and Sociobiology, 2007, 61, 679-688.	1.4	114
72	Can measures of prey availability improve our ability to predict the abundance of large marine predators?. Oecologia, 2007, 153, 563-568.	2.0	40

#	Article	IF	CITATIONS
73	Fear factor: do dugongs (Dugong dugon) trade food for safety from tiger sharks (Galeocerdo) Tj ETQq1 1 0.7843	14.rgBT /C 2.0	Verlock 10
74	Validation of a randomization procedure to assess animal habitat preferences: microhabitat use of tiger sharks in a seagrass ecosystem. Journal of Animal Ecology, 2006, 75, 666-676.	2.8	75
75	Tiger shark (Galeocerdo cuvier) abundance and growth in a subtropical embayment: evidence from 7Ayears of standardized fishing effort. Marine Biology, 2006, 149, 961-968.	1.5	66
76	CAN PREY USE DIETARY CUES TO DISTINGUISH PREDATORS? A TEST INVOLVING THREE TERRESTRIAL AMPHIBIANS. Herpetologica, 2005, 61, 104-110.	0.4	8
77	RELATIONSHIP BETWEEN BODY CONDITION AND VULNERABILITY TO PREDATION IN RED SQUIRRELS AND SNOWSHOE HARES. Journal of Mammalogy, 2002, 83, 707-715.	1.3	48
78	Patterns in consumption of woody plants by snowshoe hares in the northwestern United States. Ecoscience, 2002, 9, 440-449.	1.4	14
79	Estimating low-density snowshoe hare populations using fecal pellet counts. Canadian Journal of Zoology, 2002, 80, 771-781.	1.0	81
80	A demographic analysis of a southern snowshoe hare population in a fragmented habitat: evaluating the refugium model. Canadian Journal of Zoology, 2002, 80, 169-177.	1.0	53
81	Noninvasive Estimation of Body Composition in Small Mammals: A Comparison of Conductive and Morphometric Techniques. Physiological and Biochemical Zoology, 2002, 75, 489-497.	1.5	31
82	Biology's best friend: Bridging disciplinary gaps to advance canine science. Integrative and Comparative Biology, 0, , .	2.0	4