Jacek $B \AA, a \AA 11 / 4$ ewicz

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/1593435/publications.pdf
Version: 2024-02-01

1. Learning vector quantization as an interpretable classifier for the detection of SARS-CoV-2 types based on their RNA sequences. Neural Computing and Applications, 2022, 34, 67-78.

Two-machine flow shop scheduling with a common due date to maximize total early work. European Journal of Operational Research, 2022, 300, 504-511.

3 RNA World Modeling: A Comparison of Two Complementary Approaches. Entropy, 2022, 24, 536.
$2.2 \quad 1$

4 RNAloops: a database of RNA multiloops. Bioinformatics, 2022, 38, 4200-4205.
$4.1 \quad 8$

Alternative algorithms for identical machines scheduling to maximize total early work with a
common due date. Computers and Industrial Engineering, 2022, 171, 108386.
6.33

Mirror scheduling problems with early work and late work criteria. Journal of Scheduling, 2021, 24,
483-487.

Semi-online scheduling on two identical machines with a common due date to maximize total early
work. Discrete Applied Mathematics, 2021, 290, 71-78.
0.9

17

8 Genome-scale <i>de novo</i> assembly using ALGA. Bioinformatics, 2021, 37, 1644-1651.

A Fast Algorithm for Knapsack Problem with Conflict Graph. Asia-Pacific Journal of Operational
9 Research, 2021, 38, .

10 New Perspectives in Scheduling Theory. Journal of Scheduling, 2021, 24, 455-457.
1.9

1

11 Virxicon: a lexicon of viral sequences. Bioinformatics, 2021, 36, 5507-5513.
4.1

6

12 The correctness of large scale analysis of genomic data. Foundations of Computing and Decision
Sciences, 2021, 46, 423-436.
1.2

0
13 Fully polynomial time approximation scheme to maximize early work on parallel machines with
common due date. European Journal of Operational Research, 2020, 284, 67-74.

Multi-agent approach to sequence structure simulation in the RNA World hypothesis. PLoS ONE, 2020,
15, e0238253.

Exact and heuristic algorithms for scheduling on two identical machines with early work
maximization. Computers and Industrial Engineering, 2020, 144, 106449.
6.3

14

Searching for the Origins of Life â€" Detecting RNA Life Signatures Using Learning Vector Quantization.
Advances in Intelligent Systems and Computing, 2020, , 324-333.

Recent Results on Computational Molecular Modeling of The Origins of Life. Foundations of
Computing and Decision Sciences, 2020, 45, 35-46.
1.2

RNAvista: a webserver to assess RNA secondary structures with non-canonical base pairs.

20 Open Shop Scheduling. , 2019, , 321-343.
0

21 Prebiotic Soup Components Trapped in Montmorillonite Nanoclay Form New Molecules:
2.4

Car-Parrinello Ab Initio Simulations. Life, 2019, 9, 46.
6

22 Flow Shop Scheduling. , 2019, , 271-320.

24 Scheduling Imprecise Computations., 2019, , 527-576.

25 Handbook on Scheduling. , 2019, , .

Detecting life signatures with RNA sequence similarity measures. Journal of Theoretical Biology, 2019, 463, 110-120.
$1.7 \quad 5$

27	Clarification of lower bounds of two-machine flow-shop scheduling to minimize total late work. Engineering Optimization, 2019, 51, 1279-1280.	2.6
28	Two-machine flow-shop scheduling to minimize total late work: revisited. Engineering Optimization, $2019,51,1268-1278$.	2.6

29 PUM1 and PUM2 exhibit different modes of regulation for SIAH1 that involve cooperativity with NANOS paralogues. Cellular and Molecular Life Sciences, 2019, 76, 147-161.

$5.4 \quad 16$

30 Cloud Brokering with Bundles: Multi-objective Optimization of Services Selection. Foundations of Computing and Decision Sciences, 2019, 44, 407-426.
$1.2 \quad 1$
VirDB: Crowdsourced Database for Evaluation of Dynamical Viral Infection Models. Current
Bioinformatics, 2019, 14, 740-748.
$1.5 \quad 0$

32 RNApdbee 2.0: multifunctional tool for RNA structure annotation. Nucleic Acids Research, 2018, 46,
14.5

81
W30-W35.
$5.7 \quad 16$

Graph algorithms for DNA sequencing $\hat{\text { â }}$ " origins, current models and the future. European Journal of
Operational Research, 2018, 264, 799-812.
$5.7 \quad 16$
6

GRASShopPERâ€"An algorithm for de novo assembly based on GPU alignments. PLoS ONE, 2018, 13, e0202355.

An integrated model for the transshipment yard scheduling problem. Journal of Scheduling, 2017, 20,
$57-65$.

Understanding Life: A Bioinformatics Perspective. European Review, 2017, 25, 231-245.
0.7

Tabu Search for the RNA Partial Degradation Problem. International Journal of Applied Mathematics and Computer Science, 2017, 27, 401-415.

Complexity of late work minimization in flow shop systems and a particle swarm optimization algorithm for learning effect. Computers and Industrial Engineering, 2017, 111, 176-182.
6.3

27

Modeling of the catalytic core of Arabidopsis thaliana Dicer-like 4 protein and its complex with
double-stranded RNA. Computational Biology and Chemistry, 2017, 66, 44-56.
$2.3 \quad 12$

Simulating the origins of life: The dual role of RNA replicases as an obstacle to evolution. PLoS ONE,
2017, 12, e0180827.

Computational prediction of nonenzymatic RNA degradation patterns. Acta Biochimica Polonica, 2017, 63, 745-751.

Novel dual discounting functions for the Internet shopping optimization problem: new algorithms.
Journal of Scheduling, 2016, 19, 245-255.

45 Computer Representations of Bioinformatics Models. Current Bioinformatics, 2016, 11, 551-560.
1.5

11

AmiRNA Designer - new method of artificial miRNA design.. Acta Biochimica Polonica, 2016, 63, 71-77.
0.5

17

47 Hypercycle. PLoS Computational Biology, 2016, 12, e1004853.
3.2

29

48 Exact and heuristic approaches to solve the Internet shopping optimization problem with delivery costs. International Journal of Applied Mathematics and Computer Science, 2016, 26, 391-406.

49 New challenges in scheduling theory. Journal of Scheduling, 2016, 19, 617-618.
1.9

0

Recent Advances in Operations Research in Computational Biology, Bioinformatics and Medicine.
RAIRO - Operations Research, 2016, 50, 327-330.

Automated RNA 3D Structure Prediction with RNAComposer. Methods in Molecular Biology, 2016, 1490,
199-215.

G-MAPSEQ â€" a new method for mapping reads to a reference genome. Foundations of Computing and
Decision Sciences, $2016,41,123-142$.
1.2
1.8

0

50

Structural alignment of protein descriptors â $€^{〔}$ a combinatorial model. BMC Bioinformatics, 2016, 17,
383.
2.6

DomGen-Graph based method for protein domain delineation. RAIRO - Operations Research, 2016, 50,
363-374.

Simultaneous detection of mutations and copy number variation of NPM1 in the acute myeloid
56 leukemia using multiplex ligation-dependent probe amplification. Mutation Research - Fundamental and
1.0

10 Molecular Mechanisms of Mutagenesis, 2016, 786, 14-26.

57 Good Laboratory Practice for optimization research. Journal of the Operational Research Society,
3.4

63

58 Algorithms solving the Internet shopping optimization problem with price discounts. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2016, 64, 505-516.
New in silico approach to assessing RNA secondary structures with non-canonical base pairs. BMC
Bioinformatics, 2015, 16, 276.
2.6

31

60 Cloud Brokering: Current Practices and Upcoming Challenges. IEEE Cloud Computing, 2015, 2, 40-47.
3.9
RNAssessâ€"a web server for quality assessment of RNA 3D structures. Nucleic Acids Research, 2015, 43,
W502-W506.
W502-W506.
14.5
24

SphereGrinder - reference structure-based tool for quality assessment of protein structural models. , 2015, , .

[^0]$0.9 \quad 1$

66 Optimal pathway reconstruction on 3D NMR maps. Discrete Applied Mathematics, 2015, 182, 134-149.
0.9

7

67 New perspectives in scheduling theory. Journal of Scheduling, 2015, 18, 333-334.
1.9

7

68 New challenges in scheduling theory. RAIRO - Operations Research, 2015, 49, 335-337.
1.8

0

69
 Reference Alignment Based Methods for Quality Evaluation of Multiple Sequence Alignment - A Survey.
 Current Bioinformatics, 2014, 9, 44-56.

1.5

Message from the BusinessClouds 2014 Workshop Chairs. , 2014, , .

78 How to Efficiently Solve Internet Shopping Optimization Problem with Price Sensitive Discounts?. , 2014, ,.

79 Guest editorial: â€œNew trends in schedulingâ€: Journal of Scheduling, 2013, 16, 347-348.
A hyper-heuristic approach to sequencing by hybridization of DNA sequences. Annals of Operations
Research, 2013, 207, 27-41.

81	MLP accompanied beam search for the resonance assignment problem. Journal of Heuristics, 2013, 19, 443-464.	1.4
82	-MSA â€" A GPU-based, fast and accurate algorithm for multiple sequence alignment. Journal of Parallel and Distributed Computing, 2013, 73, 32-41.	4.1
83	RNAlyzerâ€"novel approach for quality analysis of RNA structural models. Nucleic Acids Research, 2013, 41, 5978-5990.	14.5
84	ModeLang: A New Approach for Experts-Friendly Viral Infections Modeling. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-8.	1.3

85 Turning data into folds using RNAComposer. , 2013, , .0G-DNA â€" a highly efficient multi-GPU/MPI tool for aligning nucleotide reads. Bulletin of the Polish
Reduced-by-matching Graphs: Toward Simplifying Hamiltonian Circuit Problem. Fundamenta
Informaticae, 2012, 118, 225-244.
.

92 G-PAS 2.0 â $€^{\prime \prime}$ an improved version of protein alignment tool with an efficient backtracking routine on multiple GPUs. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2012, 60, 491-494.
$0.8 \quad 5$

Poseidon: An information retrieval and extraction system for metagenomic marine science. Ecological
5.2

Poseidon: An information retrieval and extraction system for metagenomic marine science. Ecological
Informatics, 2012, 12, 10-15.

GeVaDSs â€" decision support system for novel Genetic Vaccine development process. BMC
94 Bioinformatics, 2012, 13, 91.
2.64

4

95 Complexity Issues in Computational Biology. Fundamenta Informaticae, 2012, 118, 385-401.
$0.4 \quad 5$

96 Editorial: new branches, old roots. Journal of Scheduling, 2012, 15, 399-401.
1.9

0
97 A simulated annealing hyper-heuristic methodology for flexible decision support. 4or, 2012, 10, 43-66.

Highly Efficient Parallel Approach to the Next-Generation DNA Sequencing. Lecture Notes in Computer Science, 2012, , 262-271.

RNA Partial Degradation Problem: Motivation, Complexity, Algorithm. Journal of Computational
Biology, 2011, 18, 821-834.
Biology, $2011,18,821-834$.

The simplified partial digest problem: Approximation and a graph-theoretic model. European Journal of

Some operations research methods for analyzing protein sequences and structures. Annals of

111 Hepatitis C virus quasispecies in chronically infected children subjected to interferonâ $€^{\text {"ribavirin }}$
therapy. Archives of Virology, 2010, 155, 1977-1987.

113	Operations Research Models for Computational Biology, Bioinformatics and Medicine. Mathematical Modelling and Algorithms, 2010, 9, 209-211.	0.5	1
114	RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures. BMC Bioinformatics, 2010, 11, 231.	2.6	130
115	Towards Prediction of HCV Therapy Efficiency. Computational and Mathematical Methods in Medicine, 2010, 11, 185-199.	1.3	9

116 Genetic and Tabu search algorithms for peptide assembly problem. RAIRO - Operations Research, 2010, 44, 153-166.

```
117 New insights into the human body iron metabolism analyzed by a Petri net based approach. BioSystems, 2009, 96, 104-113.
```

Whole genome assembly from 454 sequencing output via modified DNA graph concept. Computational Biology and Chemistry, 2009, 33, 224-230.
2.3

18
118 Whole genome assembl Chemistry, 2009, 33, 224-230.
$0.9 \quad 7$
119 Modeling the process of human body iron homeostasis using a variant of timed Petri nets. Discrete Applied Mathematics, 2009, 157, 2221-2231.
1

120 On the approximability of the Simplified Partial Digest Problem. Discrete Applied Mathematics, 2009, 157, 3586-3592.
0.9

2

121 An assignment walk through 3D NMR spectrum. , 2009, , .

327 TWO TYPES OF VIRAL QUASISPECIES IDENTIFIED IN CHILDREN SUFFERING FROM CHRONIC HEPATITIS C.
 122327 TWO TYPES OF VIRAL QUASISPECIES
 3.7
 1

The Knapsack-Lightening problem and its application to scheduling HRT tasks. Bulletin of the Polish
Academy of Sciences: Technical Sciences, 2009, 57, .
0.8

0

Translational and structural analysis of the shortest legume ENOD40 gene in Lupinus luteus.. Acta Biochimica Polonica, 2009, 56, .

Some remarks on evaluating the quality of the multiple sequence alignment based on the BAliBASE
benchmark. International Journal of Applied Mathematics and Computer Science, 2009, 19, 675-678.
1.5

5
127 Finding Hamiltonian circuits in quasi-adjoint graphs. Discrete Applied Mathematics, 2008, 156,2573-2580.
128 A new algorithm for genome assembly from short reads. , 2008, , .
129 Branch and bound algorithm for nonenzymatic RNA degradation. , 2008, , 01
130 Parallel Implementation of the Novel Approach to Genome Assembly. , 2008, , .0
131 Web and Grid Technologies in Bioinformatics, Computational and Systems Biology: A Review. Current Bioinformatics, 2008, 3, 10-31.
Simplified Partial Digest Problem: Enumerative and Dynamic Programming Algorithms. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2007, 4, 668-680. 3.0
An analysis of the Petri net based model of the human body iron homeostasis process. Computational
Biology and Chemistry, 2007, 31, 1-10.$0.9 \quad 4$A polynomial time equivalence between DNA sequencing and the exact perfect matching problem.Discrete Optimization, 2007, 4, 154-162.ProCKSI: a decision support system for Protein (Structure) Comparison, Knowledge, Similarity andInformation. BMC Bioinformatics, 2007, 8, 416.
2.6 48
Petri net based model of the body iron homeostasis. Journal of Biomedical Informatics, 2007, 40,476-485.
1.9 0
137 Selected papers from the Dagstuhl workshop. Journal of Scheduling, 2007, 10, 85-86.1.925A note on the two machine job shop with the weighted late work criterion. Journal of Scheduling,2007, 10, 87-95.3.444
140 DNA Sequencing by Hybridization via Genetic Search. Operations Research, 2006, 54, 1185-1192. 1.9 16
141 Computational complexity of isothermic DNA sequencing by hybridization. Discrete Applied 0.9 13
Mathematics, 2006, 154, 718-729.Dealing with repetitions in sequencing by hybridization. Computational Biology and Chemistry, 2006,30, 313-320.
143 Some operations research methods for analyzing protein sequences and structures. 4or, 2006, 4,1.611
Human fertility protein PUMILIO2 interacts in vitro with testis mRNA encoding Cdc42 effector 3 (CEP3).
Reproductive Biology, 2006, 6, 103-13.
Multistage isothermic sequencing by hybridization. Computational Biology and Chemistry, 2005, 29,
$69-77$.
An improved approximation algorithm for the single machine total completion time scheduling
problem with availability constraints. European Journal of Operational Research, 2005, 161, 3-10.
151 Selected combinatorial problems of computational biology. European Journal of Operational Research, 2005, 161, 585-597.
Application of tabu search strategy for finding low energy structure of protein. Artificial Intelligence in Medicine, 2005, 35, 135-145.
155 Predicting secondary structures of proteins. IEEE Engineering in Medicine and Biology Magazine, 2005, 24, 88-94.
$0.8 \quad 8$156 A comparison of solution procedures for two-machine flow shop scheduling with late work6.3criterion. Computers and Industrial Engineering, 2005, 49, 611-624.
$4.1 \quad 13$
157 Evoluti
Metaheuristics for Late Work Minimization in Two-Machine Flow Shop with Common Due Date. 1.3 4 Lecture Notes in Computer Science, 2005, , 222-234.
160 2005, 21, 2356-2361.
Tabu Search Method for Determining Sequences of Amino Acids in Long Polypeptides. Lecture Notes in
Computer Science, 2005, , 22-32.1.32
163 Combinatorial optimization in DNA mapping â€" a computational thread of the Simplified Partial Digest 1.8 Problem. RAIRO - Operations Research, 2005, 39, 227-241.

167	Sequencing by hybridization with isothermic oligonucleotide libraries. Discrete Applied Mathematics, 2004, 145, 40-51.	0.9	16
168	Tabu search algorithm for DNA sequencing by hybridization with isothermic libraries. Computational Biology and Chemistry, 2004, 28, 11-19.	2.3	14
169	An Algorithm for an Automatic NOE Pathways Analysis of 2D NMR Spectra of RNA Duplexes. Journal of Computational Biology, 2004, 11, 163-179.	1.6	15

170 Parallel DNA sequence assembly., 2004, , .2
171 DNA Sequencingâ€"Tabu and Scatter Search Combined. INFORMS Journal on Computing, 2004, 16, 232-240. 1.7 24
A TABU SEARCH STRATEGY FOR FINDING LOW ENERGY STRUCTURES OF PROTEINS IN HP-MODEL*.
Parallel Algorithms for Evolutionary History Reconstruction. Lecture Notes in Computer Science,2004, , 1138-1145.
0.9 49174 Complexity of DNA sequencing by hybridization. Theoretical Computer Science, 2003, 290, 1459-1473.Scheduling multiprocessor tasks on parallel processors with limited availability. European Journal of5.722Operational Research, 2003, 149, 377-389.New Algorithm for the Simplified Partial Digest Problem. Lecture Notes in Computer Science, 2003, ,1.31
95-110.$1.3 \quad 1$
673-683.
Scheduling jobs in open shops with limited machine availability. RAIRO - Operations Research, 2002, 36,
$149-156$.

182 The complexity of two group scheduling problems. Journal of Scheduling, 2002, 5, 477-485.
1.9

17

183 | Two-machine flow shops with limited machine availability. European Journal of Operational Research, |
| :--- |
| $2002,136,528-540$. |

184 | Linear and quadratic algorithms for scheduling chains and opposite chains. European Journal of |
| :--- |
| Operational Research, 2002, 137, 248-264. |

185 Review of properties of different precedence graphs for scheduling problems. European Journal of
Operational Research, 2002, 142, 435-443.
5.7

105

Linear and quadratic algorithms for scheduling chains and opposite chains. European Journal of

Review of properties of different precedence graphs for scheduling problems. European Journal of
5.716

On the recognition of de Bruijn graphs and their induced subgraphs. Discrete Mathematics, 2002, 245,
81-92.
0.7

13

187 Hybrid Genetic Algorithm for DNA Sequencing with Errors. Journal of Heuristics, 2002, 8, 495-502.
1.4

38

DNA Sequencing, Eulerian Graphs, and the Exact Perfect Matching Problem. Lecture Notes in Computer Science, 2002, , 13-24.

189 A New Parallel Approach for Multi-dimensional Packing Problems. Lecture Notes in Computer Science, 2002, , 194-201.

190 Tabu Search for Two-Dimensional Irregular Cutting. Operations Research/ Computer Science Interfaces Series, 2002, , 101-128.

191 A note on the complexity of scheduling coupled tasks on a single processor. Journal of the Brazilian
Computer Society, 2001, 7, 23-26.
1.3

Production planning and scheduling in flexible assembly systems. Tadeusz Sawik, Springer, Berlin. ISBN 3-540-64998-0. Journal of Scheduling, 2001, 4, 66-67.
1.9
o
0.3

3

Heuristic algorithms for the two-machine flowshop with limited machine availability. Omega, 2001, 29, 599-608.

Construction of DNA restriction maps based on a simplified experiment. Bioinformatics, 2001, 17, 398-404.

Scheduling Computer and Manufacturing Processes. , 2001, , .
147

Extension of Disjunctive Graph Model for Job Shop Scheduling Problem. Operations Research
Proceedings: Papers of the Annual Meeting = VortrÂge Der Jahrestagung / DGOR, 2001, , 359-365.
0.1
o
199 Scheduling in Job Shops. , 2001, , 273-315. 0
200 Scheduling under Resource Constraints. , 2001, , 317-365.1
201 New trends on scheduling in parallel and distributed systems. Parallel Computing, 2000, 26, 1061-1063. 2.1 0
202
2000, 26, 1195-1211.
Tabu search for DNA sequencing with false negatives and false positives. European Journal of 5.7
203 Tabu search for DNA sequencing with false ne $\begin{aligned} & \text { Operational Research, 2000, 125, 257-265. }\end{aligned}$2.132The disjunctive graph machine representation of the job shop scheduling problem. European Journalof Operational Research, 2000, 127, 317-331.5.769
205 Total Late Work Criteria for Shop Scheduling Problems. , 2000, , 354-359. 10
206 Management of Resources in Parallel Systems. , 2000, , 263-341. 5
207 DNA Sequencing With Positive and Negative Errors. Journal of Computational Biology, 1999, 6, 113-123. 1.6 55
Scheduling a divisible task in a two-dimensional toroidal mesh. Discrete Applied Mathematics, 1999, 94,35-50.
0.9 40
209 On some properties of DNA graphs. Discrete Applied Mathematics, 1999, 98, 1-19. 0.9 48
210 Divisible task scheduling â€"Concept and verification. Parallel Computing, 1999, 25, 87-98.2.180Resource Constrained Chain Scheduling of UET Jobs on Two Machines. Operations Research, 1998, 46,742-746.
212 A Branch and Bound Algorithm for the Job Shop Scheduling Problem. , 1998, , 219-254.8
213 Sequential and parallel algorithms for DNA sequencing. Bioinformatics, 1997, 13, 151-158. 4.1 9
Scheduling Computer and Manufacturing Processes. Journal of the Operational Research Society,1997, 48, 659-659.
Scheduling Tasks in Master-Slave Parallel Processing Systems. IFAC Postprint Volumes IPPV |
International Federation of Automatic Control, 1997, 30, 255-260.
0.4 0
217 Linear algorithms for preemptive scheduling of multiprocessor tasks subject to minimal lateness.

219
PARAMETER ANALYSIS OF CLUSTERS OF MELTING TEMPERATURES OF DNA CHAINS. Computational Methods 0.3

in Science and Technology, 1997, 3, 7-17.2
Scheduling complete intrees on two uniform processors with communication delays. Information Scheduling complete intrees on two un
$220 \quad$ Processing Letters, 1996, 58, 255-263.
221 Deadline scheduling of multiprocessor tasks. Discrete Applied Mathematics, 1996, 65, 81-95.
The job shop scheduling problem: Conventional and new solution techniques. European Journal ofOperational Research, 1996, 93, 1-33.
$223 \quad \begin{aligned} & \text { Dagstuhl seminar on â€œScheduling in co } \\ & \text { Operational Research, 1996, 94, 213-214. }\end{aligned}$ 5.7 0
224 Scheduling multiprocessor tasks with chain constraints. European Journal of Operational Research,

2245.726
1996, 94, 231-241.
225 Scheduling under Resource Constraints. , 1996, , 319-367. 2
226 Scheduling on Parallel Processors. , 1996, , 139-205. 0
227 Scheduling in Job Shops. , 1996, , 275-317. 0A COMPARISON OF TWO DNA SEQUENCING METHODS. Computational Methods in Science and$0.3 \quad 1$
Technology, 1996, 2, 17-32. 228
3.4 13229 A local search approach for two-dimensional irregular cutting. OR Spectrum, 1995, 17, 93-98.
230 Scheduling divisible jobs on hypercubesâ€. Parallel Computing, 1995, 21, 1945-1956. 2.1 66Scheduling multiprocessor tasks on a dynamic configuration of dedicated processors. Annals ofOperations Research, 1995, 58, 493-517.
4.1 38231
232 Multiprocessor task scheduling with resource requirements. Real-Time Systems, 1994, 6, 37-53. 1.3 8

Scheduling with resource management in manufacturing systems. European Journal of Operational
Research, 1994, 76, 1-14.

Scheduling preemptive multiprocessor tasks on dedicated processors. Performance Evaluation, 1994, 20, 361-371.

Optimal centralized algorithms for store-and-forward deadlock avoidance. IEEE Transactions on
$237 \begin{aligned} & \text { Optimal centralized algorithms for } \\ & \text { Computers, 1994, 43, 1333-1338. }\end{aligned}$
3.4

238 Parallel Processor Scheduling. , 1994, , 112-170.

239 Resource Constrained Scheduling. , 1994, , 192-234.

Scheduling in computer and manufacturing systems. European Journal of Operational Research, 1993,
71, 147-148.

Algorithms for minimizing maximum lateness with unit length tasks and resource constraints.
$241 \quad$ Discrete Applied Mathematics, 1993, 42, 123-138.
0.9

Some preemptive open shop scheduling problems with a renewable or a nonrenewable resource.
Discrete Applied Mathematics, 1993, 43, 103-104.

Using a tabu search approach for solving the two-dimensional irregular cutting problem. Annals of
4.1

78

$$
243 \begin{aligned}
& \text { Using a tabu search approach for solving } \\
& \text { Operations Research, 1993, 41, 313-325. }
\end{aligned}
$$

Graph theoretical issues in computer networks. European Journal of Operational Research, 1993, 71,
1-16.

Preemptive scheduling of multiprocessor tasks on the dedicated processor system subject to minimal
lateness. Information Processing Letters, 1993, 46, 109-113.

Parallel Processor Scheduling., 1993, , 113-171.
0

247 Resource Constrained Scheduling. , 1993, , 193-235.

0

Some preemptive open shop scheduling problems with a renewable or a nonrenewable resource.
Discrete Applied Mathematics, 1992, 35, 205-219.

Optimization aspects of deadlock prevention in packet-switching networks. European Journal of
Operational Research, 1992, 57, 1-12.

A preemptive open shop scheduling problem with one resource. Operations Research Letters, 1991, 10,
9-15.

Mathematical programming formulations for machine scheduling: A survey. European Journal of
Operational Research, 1991, 51, 283-300.

Scheduling tasks and vehicles in a flexible manufacturing system. Flexible Services and Manufacturing Journal, 1991, 4, 5-16.
253 Scheduling independent two pr$255 \begin{aligned} & \text { Scheduling unit â€" time tasks on flow â€" shops under resource constraints. Annals of Operations } \\ & \text { Research, } 1988,16,255-266 .\end{aligned}$Research, 1988, 16, 255-266.4.115
256 Selected Topics in Scheduling Theory. North-Holland Mathematics Studies, 1987, 132, 1-59.0.234
257 Time-Stamp Approach to Prevention of Different Deadlock Types in Store-and-Forward Networks. IEEE
Transactions on Communications, 1987, 35, 564-566. 7.8Time-Stamp Approach to Store-and-Forward Deadlock Prevention. IEEE Transactions onCommunications, 1987, 35, 490-495.7.8259 Minimizing mean flow-time with parallel processors and resource constraints. Acta Informatica, 1987,24, 513-524.
260 Minimizing mean weighted execution ti
Processing Letters, 1987, 24, 259-263.0.656
$3.4 \quad 216$
$261 \quad$ Scheduling Mu5.722
262 Scheduling tasks on two processors with deadlines and additional resources. European Journal ofOperational Research, 1986, 26, 364-370.
0.9 3
263 Dynamic storage allocation with limited compaction - complexity and some practical implications.Discrete Applied Mathematics, 1985, 10, 241-253.0.639Scheduling independent 2-processor tasks to minimize schedule length. Information ProcessingLetters, 1984, 18, 267-273.
0.6 13
Deadlock-Resistant Flow Control Procedures for Store-and-Forward Networks. IRE Transactions on
265 Communications Systems, 1984, 32, 884-887.0.741A linear time algorithm for restricted bin packing and scheduling problems. Operations ResearchLetters, 1983, 2, 80-83.
Scheduling subject to resource constraints: classification and complexity. Discrete Applied 0.9 1,142
267 Mathematics, 1983, 5, 11-24.
5.7 12
Solving the resource constrained deadline scheduling problem via reduction to the network flow
268 problem. European Journal of Operational Research, 1981, 6, 75-79.
0.6 32Deadline scheduling of tasks with ready times and resource constraints. Information Processing$269 \quad \begin{aligned} & \text { Deadline scheduling of } \\ & \text { Letters, 1979, 8, 60-63. }\end{aligned}$

[^0]: 65 A study of scheduling problems with preemptions on multi-core computers with GPU accelerators.
 Discrete Applied Mathematics, 2015, 196, 72-82.

