Jacek $B \AA, a \AA 11 / 4$ ewicz

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/1593435/publications.pdf
Version: 2024-02-01

1 Scheduling subject to resource constraints: classification and complexity. Discrete Applied
 1 Mathematics, 1983, 5, 11-24.

0.9

1,142

2 Automated 3D structure composition for large RNAs. Nucleic Acids Research, 2012, 40, el12-el12.
14.5

564

3 The job shop scheduling problem: Conventional and new solution techniques. European Journal of Operational Research, 1996, 93, 1-33.
5.7

458

4 Scheduling Multiprocessor Tasks to Minimize Schedule Length. IEEE Transactions on Computers, 1986, C-35, 389-393.
3.4

216

5 Scheduling Computer and Manufacturing Processes. , 2001, , .

6 Mathematical programming formulations for machine scheduling: A survey. European Journal of
Operational Research, 1991, 51, 283-300.
5.7

137

RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the
7 three-dimensional fragments within RNA structures. BMC Bioinformatics, 2010, 11, 231.

Automated RNA 3D Structure Prediction with RNAComposer. Methods in Molecular Biology, 2016, 1490, 8 199-215.

9 Vehicle scheduling in two-cycle flexible manufacturing systems. Mathematical and Computer
9 Modelling, 1994, 20, 19-31.

An improved approximation algorithm for the single machine total completion time scheduling problem with availability constraints. European Journal of Operational Research, 2005, 161, 3-10.
5.7
11 Two-machine flow shops with limited machine availability. European Journal of Operational Research,
2002, 136, 528-540.
$5.7 \quad 105$

RNApdbee 2.0: multifunctional tool for RNA structure annotation. Nucleic Acids Research, 2018, 46,
W30-W35.
14.5

81

13 Divisible task scheduling â€ ${ }^{\text {" }}$ Concept and verification. Parallel Computing, 1999, 25, 87-98.
2.1

80

14 Using a tabu search approach for solving the two-dimensional irregular cutting problem. Annals of Operations Research, 1993, 41, 313-325.
4.1

78

Scheduling tasks and vehicles in a flexible manufacturing system. Flexible Services and Manufacturing
 Journal, 1991, 4, 5-16.

$0.4 \quad 70$

$$
\begin{aligned}
& \text { Distributed processing of divisible jobs with communication startup costs. Discrete Applied } \\
& \text { Mathematics, 1997, 76, 21-41. }
\end{aligned}
$$Good Laboratory Practice for optimization research. Journal of the Operational Research Society,2016, 67, 676-689.Scheduling Malleable Tasks on Parallel Processors to Minimize the Makespan. Annals of OperationsHeuristic algorithms for the two-machine flowshop with limited machine availability. Omega, 2001, 29,599-608.Minimizing mean weighted execution time loss on identical and uniform processors. InformationProcessing Letters, 1987, 24, 259-263.

> The two-machine flow-shop problem with weighted late work criterion and common due date.
5.7
33 On some properties of DNA graphs. Discrete Applied Mathematics, 1999, 98, 1-19. 0.9 48
Information. BMC Bioinformatics, 2007, 8, 416.
$\#$
37
38

| 37 | Preemptable malleable task scheduling problem. IEEE Transactions on Computers, 2006, 55, 486-490. | 3.4 |
| :--- | :--- | :--- | | 44 |
| :--- |
| 38 | | Berth and quay crane allocation: a moldable task scheduling model. Journal of the Operational |
| :--- |
| Research Society, 2011, 62, 1189-1197. |

-MSA â€" A GPU-based, fast and accurate algorithm for multiple sequence alignment. Journal of Parallel	4.14
and Distributed Computing, 2013, 73, 32-41.	

Tabu search for DNA sequencing with false negatives and false positives. European Journal of
Operational Research, 2000, 125, 257-265.
41 Sorting signal targeting mRNA into hepatic extracellular vesicles. RNA Biology, 2014, 11, 836-844. 3.142
A linear time algorithm for restricted bin packing and scheduling problems. Operations Research Letters, 1983, 2, 80-83.
43 Handbook on Scheduling. , 2019, , .41Scheduling a divisible task in a two-dimensional toroidal mesh. Discrete Applied Mathematics, 1999, 94,
47 Scheduling multiprocessor tasks on a dynamic configuration of dedicated processors. Annals of Operations Research, 1995, 58, 493-517.
$4.1 \quad 38$48 Hybrid Genetic Algorithm for DNA Sequencing with Errors. Journal of Heuristics, 2002, 8, 495-502.1.438
49 Cloud Brokering: Current Practices and Upcoming Challenges. IEEE Cloud Computing, 2015, 2, 40-47. 3.9 38Scheduling with resource management in manufacturing systems. European Journal of Operational

$55 \quad$| Deadline scheduling of tasks with ready times and resource constraints. Information Processing |
| :--- |
| Letters, 1979, 8, 60-63. |

$56 \quad$| Scheduling preemptable tasks on parallel processors with limited availability. Parallel Computing, |
| :--- |
| $2000,26,1195-1211$. |

$57 \quad$| Scheduling preemptive multiprocessor tasks on dedicated processors. Performance Evaluation, 1994, |
| :--- |
| $20,361-371$. |

58 New in silico approach to assessing RNA secondary structures with non-canonical base pairs. BMC
61 Minimizing mean flow-time with parallel processors and resource constraints. Acta Informatica, 1987,
63 Construction of DNA restriction maps based on a simplified experiment. Bioinformatics, 2001, 17,
$4.1 \quad 25$

RNAssessâ€"a web server for quality assessment of RNA 3D structures. Nucleic Acids Research, 2015, 43, W502-W506.
$14.5 \quad 24$

Preemptive multiprocessor task scheduling with release times and time windows. Annals of
Application of tabu search strategy for finding low energy structure of protein. Artificial
Intelligence in Medicine, 2005, 35, 135-145.

70 Petri net based model of the body iron homeostasis. Journal of Biomedical Informatics, 2007, 40, 476-485.
Scheduling tasks on two processors with deadlines and additional resources. European Journal of
73 Operational Research, 1986, 26, 364-370.

Scheduling multiprocessor tasks on parallel processors with limited availability. European Journal of

```81 RNA tertiary structure determination: NOE pathways construction by tabu search. Bioinformatics,
87 The complexity of two group scheduling problems. Journal of Scheduling, 2002, 5, 477-485. ..... 1.9 ..... 17

SphereGrinder - reference structure-based tool for quality assessment of protein structural models. ,
2015, , .
Some preemptive open shop scheduling problems with a renewable or a nonrenewable resource.
Discrete Applied Mathematics, 1992, 35, 205-219.

Parallel tabu search approaches for two-dimensional cutting. Parallel Processing Letters, 2004, 14,
\(0.6 \quad 16\)

96 Sequencing by hybridization with isothermic oligonucleotide libraries. Discrete Applied Mathematics,
99 New algorithms for coupled tasks scheduling \(\hat{\epsilon^{\prime \prime}}\) a survey. RAIRO - Operations Research, 2012, 46, 335-3.
\(100 \quad\)\begin{tabular}{l} 
A hyper-heuristic approach to sequencing by hybridization of DNA sequences. Annals of Operations \\
Research, 2013, 207, 27-41.
\end{tabular}
\(101 \quad\)\begin{tabular}{l} 
Graph algorithms for DNA sequencing \(\hat{a} \epsilon^{\prime \prime}\) origins, current models and the future. European Journal of \\
Operational Research, 2018, 264, 799-812.
\end{tabular}109 Tabu search algorithm for DNA sequencing by hybridization with isothermic libraries. ComputationalBiology and Chemistry, 2004, 28, 11-19.
Exact and heuristic algorithms for scheduling on two identical machines with early work maximization. Computers and Industrial Engineering, 2020, 144, 106449.
6.3
Deadlock-Resistant Flow Control Procedures for Store-and-Forward Networks. IRE Transactions on
111 Communications Systems, 1984, 32, 884-887.
0.6

13

A local search approach for two-dimensional irregular cutting. OR Spectrum, 1995, 17, 93-98.
3.4

13

113 Deadline scheduling of multiprocessor tasks. Discrete Applied Mathematics, 1996, 65, 81-95.
\(0.9 \quad 13\)

On the recognition of de Bruijn graphs and their induced subgraphs. Discrete Mathematics, 2002, 245,
81-92.
0.7

13

115 Evolutionary Approaches to DNA Sequencing with Errors. Annals of Operations Research, 2005, 138,
67-78.

Computational complexity of isothermic DNA sequencing by hybridization. Discrete Applied
116 Mathematics, 2006, 154, 718-729.
\(0.9 \quad 13\)
An integrated model for the transshipment yard scheduling problem. Journal of Scheduling, 2017, 20,57-65.

Solving the resource constrained deadline scheduling problem via reduction to the network flow problem. European Journal of Operational Research, 1981, 6, 75-79.
5.7
119 Some operations research methods for analyzing protein sequences and structures. Annals of
119 Operations Research, 2010, 175, 9-35.
4.1 ..... 122.312Modeling of the catalytic core of Arabidopsis thaliana Dicer-like 4 protein and its complex withdouble-stranded RNA. Computational Biology and Chemistry, 2017, 66, 44-56.Two-machine flow-shop scheduling to minimize total late work: revisited. Engineering Optimization,2.612
2019, 51, 1268-1278.Linear algorithms for preemptive scheduling of multiprocessor tasks subject to minimal lateness.Recent advances in scheduling in computer and manufacturing systems. European Journal of5.7Operational Research, 2005, 164, 573-574.Dealing with repetitions in sequencing by hybridization. Computational Biology and Chemistry, 2006,30, 313-320.
125 91-123.
\begin{tabular}{|c|c|c|c|}
\hline 127 & ModeLang: A New Approach for Experts-Friendly Viral Infections Modeling. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-8. & 1.3 & 11 \\
\hline 128 & Unified encoding for hyper-heuristics with application to bioinformatics. Central European Journal of Operations Research, 2014, 22, 567-589. & 1.8 & 11 \\
\hline 129 & Computer Representations of Bioinformatics Models. Current Bioinformatics, 2016, 11, 551-560. & 1.5 & 11 \\
\hline 130 & RNAvista: a webserver to assess RNA secondary structures with non-canonical base pairs. Bioinformatics, 2019, 35, 152-155. & 4.1 & 11 \\
\hline 131 & From HP Lattice Models to Real Proteins: Coordination Number Prediction Using Learning Classifier Systems. Lecture Notes in Computer Science, 2006, , 208-220. & 1.3 & 11 \\
\hline 132 & E-Commerce Evaluation â€" Multi-Item Internet Shopping. Optimization and Heuristic Algorithms. Operations Research Proceedings: Papers of the Annual Meeting = VortrÃge Der Jahrestagung / DGOR, 2011, , 149-154. & 0.1 & 11 \\
\hline 133 & Scheduling complete intrees on two uniform processors with communication delays. Information Processing Letters, 1996, 58, 255-263. & 0.6 & 10 \\
\hline
\end{tabular}
134 Total Late Work Criteria for Shop Scheduling Problems. , 2000, , 354-359. ..... 10
135 A novel representation of graph structures in web mining and data analysis. Omega, 2005, 33, 65-71. ..... 5.9 ..... 10Simplified Partial Digest Problem: Enumerative and Dynamic Programming Algorithms. IEEE/ACMTransactions on Computational Biology and Bioinformatics, 2007, 4, 668-680.
\(3.0 \quad 10\)
Finding Hamiltonian circuits in quasi-adjoint graphs. Discrete Applied Mathematics, 2008, 156,2573-2580.
0.9 ..... 10
138 Combinatorial optimization issues in scheduling. Journal of Scheduling, 2011, 14, 221-223. ..... 1.9 ..... 10
139 On the complexity of the independent set problem in triangle graphs. Discrete Mathematics, 2011, 311 , ..... 0.7 ..... 10
1670-1680.1.510Exact and heuristic approaches to solve the Internet shopping optimization problem with deliverycosts. International Journal of Applied Mathematics and Computer Science, 2016, 26, 391-406.
Simultaneous detection of mutations and copy number variation of NPM1 in the acute myeloid
141 leukemia using multiplex ligation-dependent probe amplification. Mutation Research - Fundamental and ..... 1.0 ..... 10Molecular Mechanisms of Mutagenesis, 2016, 786, 14-26.
145 Towards Prediction of HCV Therapy Efficiency. Computational and Mathematical Methods in Medicine, 2010, 11, 185-199. 1.3 ..... 9Simulating the origins of life: The dual role of RNA replicases as an obstacle to evolution. PLoS ONE,
Mirror scheduling problems with early work and late work criteria. Journal of Scheduling, 2021, 24,
\(483-487\).
148 Combinatorial optimization in DNA mapping â€" a computational thread of the Simplified Partial Digest
149 Algorithms for minimizing maximum lateness with unit length tasks and resource constraints. ..... 0.9
Discrete Applied Mathematics, 1993, 42, 123-138. ..... 8
150 Multiprocessor task scheduling with resource requirements. Real-Time Systems, 1994, 6, 37-53. ..... 1.3 ..... 8
\(151 \quad \begin{aligned} & \text { Predicting } \\ & 24,88-94 .\end{aligned}\) ..... 0.8 ..... 8
152 An assignment walk through 3D NMR spectrum. , 2009, , . ..... 8
RNA Partial Degradation Problem: Motivation, Complexity, Algorithm. Journal of Computational
Biology, 2011, 18, 821-834.
155 Translational and structural analysis of the shortest legume ENOD40 gene in Lupinus luteus.. Acta
Biochimica Polonica, 2009, 56, .8
156 RNAloops: a database of RNA multiloops. Bioinformatics, 2022, 38, 4200-4205. ..... 4.1 ..... 8
157 Optimal centralized algorithms for store-and-forward deadlock avoidance. IEEE Transactions on Computers, 1994, 43, 1333-1338. 3.4 ..... 7Modeling the process of human body iron homeostasis using a variant of timed Petri nets. Discrete
A Parallel Branch-and-Bound Approach to the Rectangular Guillotine Strip Cutting Problem. INFORMS
Journal on Computing, 2011, 23, 15-25.
Scheduling Computer and Manufacturing Processes. Journal of the Operational Research Society,
\(1997,48,659-659\).

166 MLP accompanied beam search for the resonance assignment problem. Journal of Heuristics, 2013, 19,
Recent advances in computational biology, bioinformatics, medicine, and healthcare by modern
Central European Journal of Operations Research, 2014, 22, 427-430.
168
\begin{tabular}{l} 
Building the library of RNA 3D nucleotide conformations using the clustering approach. Internation \\
Journal of Applied Mathematics and Computer Science, 2015, 25, 689-700.
\end{tabular}
\(169 \quad\)\begin{tabular}{l} 
Prebiotic Soup Components Trapped in Montmorillonite Nanoclay Form New Molecules: \\
Car-Parrinello Ab Initio Simulations. Life, 2019, 9, 46.
\end{tabular}
\(170 \quad\)\begin{tabular}{l} 
Clarification of lower bounds of two-machine flow-shop scheduling to minimize total late work. \\
Engineering Optimization, 2019, 51, 1279-1280.
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 171 & Learning vector quantization as an interpretable classifier for the detection of SARS-CoV-2 types based on their RNA sequences. Neural Computing and Applications, 2022, 34, 67-78. & 5.6 & 6 \\
\hline 172 & Two-machine flow shop scheduling with a common due date to maximize total early work. European Journal of Operational Research, 2022, 300, 504-511. & 5.7 & 6 \\
\hline 173 & G-DNA â€" a highly efficient multi-GPU/MPI tool for aligning nucleotide reads. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61, 989-992. & 0.8 & 6 \\
\hline 174 & Virxicon: a lexicon of viral sequences. Bioinformatics, 2021, 36, 5507-5513. & 4.1 & 6 \\
\hline 175 & Human fertility protein PUMILIO2 interacts in vitro with testis mRNA encoding Cdc42 effector 3 (C Reproductive Biology, 2006, 6, 103-13. & 1.9 & 6 \\
\hline
\end{tabular}

176 A note on the complexity of scheduling coupled tasks on a single processor. Journal of the Brazilian


182 Management of Resources in Parallel Systems. , 2000, , 263-341.
5
Algorithms solving the Internet shopping optimization problem with price discounts. Bulletin of the
Polish Academy of Sciences: Technical Sciences, 2016, 64, 505-516.

184 Some remarks on evaluating the quality of the multiple sequence alignment based on the BAliBASE benchmark. International Journal of Applied Mathematics and Computer Science, 2009, 19, 675-678.
\(1.5 \quad 5\)
\begin{tabular}{ll} 
Dna Sequence Assembly Involving an Acyclic Graph Model. Foundations of Computing and Decision & 1.2
\end{tabular}

186 Time-Stamp Approach to Prevention of Different Deadlock Types in Store-and-Forward Networks. IEEE
Transactions on Communications, 1987, 35, 564-566.
7.8

4
Optimization aspects of deadlock prevention in packet-switching networks. European Journal of \(187 \quad \begin{aligned} & \text { Optimization aspects of deadlock prever } \\ & \text { Operational Research, 1992, 57, 1-12. }\end{aligned}\) ..... \(5.7 \quad 4\)
188 Some preemptive open shop scheduling problems with a renewable or a nonrenewable resource.Discrete Applied Mathematics, 1993, 43, 103-104.
189 Evolutionary approach to NOE paths assignment in RNA structure elucidation. , 0, , . ..... 4
Metaheuristics for Late Work Minimization in Two-Machine Flow Shop with Common Due Date.Lecture Notes in Computer Science, 2005, , 222-234.
191 A polynomial time equivalence between DNA sequencing and the exact perfect matching problem.
Discrete Optimization, 2007, 4, 154-162.
0.9 ..... 4
The simplified partial digest problem: Approximation and a graph-theoretic model. European Journal of
5.7 ..... 4
Operational Research, 2011, 208, 142-152. 192
GeVaDSs â \(€^{\prime \prime}\) decision support system for novel Genetic Vaccine development process. BMC2.64
193 Bioinformatics, 2012, 13, 91.G-MAPSEQ \(\hat{\text { á " }}\) a new method for mapping reads to a reference genome. Foundations of Computing and1.24

199 Dynamic storage allocation with limited compaction - complexity and some practical implications.
Discrete Applied Mathematics, 1985, 10, 241-253.

200 An integrated system for scheduling machines and vehicles in an FMS. , 0, ,
3

201 Scheduling production tasks in a two-stage FMS. International Journal of Production Research, 2002, 40, 4341-4352.

Scheduling jobs in open shops with limited machine availability. RAIRO - Operations Research, 2002, 36, 149-156.

203 Multistage isothermic sequencing by hybridization. Computational Biology and Chemistry, 2005, 29,
\(2.3 \quad 3\)

GRASShopPERâ€"An algorithm for de novo assembly based on GPU alignments. PLoS ONE, 2018, 13, e0202355.

Tabu Search for Two-Dimensional Irregular Cutting. Operations Research/ Computer Science Interfaces Series, 2002, , 101-128.

PREDICTION OF RESIDUE EXPOSURE AND CONTACT NUMBER FOR SIMPLIFIED HP LATTICE MODEL PROTEINS USING LEARNING CLASSIFIER SYSTEMS. , 2006, , .

Alternative algorithms for identical machines scheduling to maximize total early work with a common due date. Computers and Industrial Engineering, 2022, 171, 108386.

208 Parallel DNA sequence assembly. , 2004, , .
2

209 Tabu Search Method for Determining Sequences of Amino Acids in Long Polypeptides. Lecture Notes in
Computer Science, 2005, , 22-32.
1.3

On the approximability of the Simplified Partial Digest Problem. Discrete Applied Mathematics, 2009, 157, 3586-3592.

Genetic and Tabu search algorithms for peptide assembly problem. RAIRO - Operations Research, 2010, 44, 153-166.

Reference Alignment Based Methods for Quality Evaluation of Multiple Sequence Alignment - A Survey. Current Bioinformatics, 2014, 9, 44-56.
1.5

2

213 Scheduling Imprecise Computations. , 2019, , 527-576.
2

Multi-agent approach to sequence structure simulation in the RNA World hypothesis. PLoS ONE, 2020, 15, e0238253.

215 Scheduling under Resource Constraints. , 1996, , 319-367.
PARAMETER ANALYSIS OF CLUSTERS OF MELTING TEMPERATURES OF DNA CHAINS. Computational Methods
in Science and Technology, 1997, 3, 7-17.

Resource Constrained Chain Scheduling of UET Jobs on Two Machines. Operations Research, 1998, 46,

\section*{222327 TWO TYPES OF VIRAL QUASISPECIES IDENTIFIED IN CHILDREN SUFFERING FROM CHRONIC HEPATITIS C.} Journal of Hepatology, 2009, 50, S127.
\(3.7 \quad 1\)
```

223 Operations Research Models for Computational Biology, Bioinformatics and Medicine. Mathematical

``` Modelling and Algorithms, 2010, 9, 209-211.
\(0.5 \quad 1\)

\section*{224 Adaptive memory programming: local search parallel algorithms for phylogenetic tree construction.}

Annals of Operations Research, 2011, 183, 75-94.
\(4.1 \quad 1\)
\[
\begin{aligned}
& 225 \quad \text { A study of scheduling problems with preemptions on multi-core computers with GPU accelerators. } \\
& \text { Discrete Applied Mathematics, 2015, 196, 72-82. }
\end{aligned}
\]
226 DomGen-Graph based method for protein domain delineation. RAIRO - Operations Research, 2016, 50, 363-374.
\(1.8 \quad 1\)
227 Tabu Search for the RNA Partial Degradation Problem. International Journal of Applied Mathematics and Computer Science, 2017, 27, 401-415.
1.5 ..... 1
A Fast Algorithm for Knapsack Problem with Conflict Graph. Asia-Pacific Journal of Operational ..... 1.3 ..... 1 Research, 2021, 38, .
229 New Perspectives in Scheduling Theory. Journal of Scheduling, 2021, 24, 455-457.1.31
230 A New Parallel Ap

231 Scheduling under Resource Constraints. , 2001, , 317-365. ..... 1DNA Based Algorithms for Some Scheduling Problems. Lecture Notes in Computer Science, 2003, ,673-683.

235 Cloud Brokering with Bundles: Multi-objective Optimization of Services Selection. Foundations of

236 RNA World Modeling: A Comparison of Two Complementary Approaches. Entropy, 2022, 24, 536.
2.2

Scheduling in computer and manufacturing systems. European Journal of Operational Research, 1993, 71, 147-148.

Graph theoretical issues in computer networks. European Journal of Operational Research, 1993, 71,
1-16.

Dagstuhl seminar on â€œScheduling in computer and manufacturing systemsâ€: European Journal of
Operational Research, 1996, 94, 213-214.

Scheduling Tasks in Master-Slave Parallel Processing Systems. IFAC Postprint Volumes IPPV |
International Federation of Automatic Control, 1997, 30, 255-260.

241 New trends on scheduling in parallel and distributed systems. Parallel Computing, 2000, 26, 1061-1063.

Production planning and scheduling in flexible assembly systems. Tadeusz Sawik, Springer, Berlin. ISBN
3-540-64998-0. Journal of Scheduling, 2001, 4, 66-67.

243 Selected papers from the Dagstuhl workshop. Journal of Scheduling, 2007, 10, 85-86.
1.9

0

244 Branch and bound algorithm for nonenzymatic RNA degradation. , 2008, , .
245 Parallel Implementation of the Novel Approach to Cenome Assembly. , 2008, , .

The Knapsack-Lightening problem and its application to scheduling HRT tasks. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2009, 57, .

247 Editorial: new branches, old roots. Journal of Scheduling, 2012, 15, 399-401.
1.9

0

248 Guest editorial: â€œNew trends in schedulingâ€: Journal of Scheduling, 2013, 16, 347-348.
1.9

0

\section*{249 Turning data into folds using RNAComposer. , 2013, , .}

0

250 Message from the BusinessClouds 2014 Workshop Chairs. , 2014, , .
0

251 New challenges in scheduling theory. Journal of Scheduling, 2016, 19, 617-618.
1.9

0
253 New challenges in scheduling theory. Journal of Scheduling, 2018, 21, 581-582.

1.9

0

254 Online Scheduling. , 2019, , 577-608.
0

255 Open Shop Scheduling. , 2019, , 321-343.
0

256 Flow Shop Scheduling. , 2019, , 271-320.
0

Extension of Disjunctive Graph Model for Job Shop Scheduling Problem. Operations Research
Proceedings: Papers of the Annual Meeting = VortrÃge Der Jahrestagung / DGOR, 2001, , 359-365.
\(0.1 \quad 0\)

258 Communication Delays and Multiprocessor Tasks., 2001, , 205-246.
0

259 Scheduling on Parallel Processors. , 2001, , 137-203.

260 Scheduling in Job Shops. , 2001, , 273-315.

Parallel Algorithms for Evolutionary History Reconstruction. Lecture Notes in Computer Science,
2004, , 1138-1145.

Highly Efficient Parallel Approach to the Next-Generation DNA Sequencing. Lecture Notes in Computer
Science, 2012, , 262-271.
1.3

0

263 Ties between Graph Theory and Biology. Discrete Mathematics and Its Applications, 2013, , 1559-1579.
0.1

0

264 Parallel Processor Scheduling. , 1993, , 113-171.
0

265 Resource Constrained Scheduling. , 1993, , 193-235.
0

266 Parallel Processor Scheduling. , 1994, , 112-170.
0

267 Scheduling on Parallel Processors. , 1996, , 139-205. 0

268 Scheduling in Job Shops. , 1996, , 275-317.
0

269 Scheduling Computer and Manufacturing Processes. Journal of the Operational Research Society, 0,
48, 659-659.
3.4

0

VirDB: Crowdsourced Database for Evaluation of Dynamical Viral Infection Models. Current```

