Robert J Deschenes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1593104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palmitoylation: policing protein stability and traffic. Nature Reviews Molecular Cell Biology, 2007, 8, 74-84.	37.0	919
2	Identification of a Ras Palmitoyltransferase inSaccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 41268-41273.	3.4	398
3	Posttranslational modification of the Ha-ras oncogene protein: evidence for a third class of protein carboxyl methyltransferases Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 4643-4647.	7.1	392
4	Thematic review series: Lipid Posttranslational Modifications. Protein palmitoylation by a family of DHHC protein S-acyltransferases. Journal of Lipid Research, 2006, 47, 1118-1127.	4.2	385
5	Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 726-730.	7.1	329
6	DHHC9 and GCP16 Constitute a Human Protein Fatty Acyltransferase with Specificity for H- and N-Ras. Journal of Biological Chemistry, 2005, 280, 31141-31148.	3.4	295
7	Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast, 1993, 9, 715-722.	1.7	289
8	SRV2, a gene required for RAS activation of adenylate cyclase in yeast. Cell, 1990, 61, 329-340.	28.9	257
9	The Function of Ras Genes in Saccharomyces Cerevisiae. Advances in Cancer Research, 1990, 54, 79-139.	5.0	201
10	New Insights into the Mechanisms of Protein Palmitoylation. Biochemistry, 2003, 42, 4311-4320.	2.5	192
11	Erf2, a Novel Gene Product That Affects the Localization and Palmitoylation of Ras2 in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1999, 19, 6775-6787.	2.3	164
12	The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO Journal, 1998, 17, 6952-6962.	7.8	162
13	2-Bromopalmitate and 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one inhibit DHHC-mediated palmitoylation in vitro. Journal of Lipid Research, 2009, 50, 233-242.	4.2	157
14	Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae Genes and Development, 1997, 11, 1690-1702.	5.9	141
15	Normal mitochondrial structure and genome maintenance in yeast requires the dynamin-like product of the MGM1 gene. Current Genetics, 1993, 24, 141-148.	1.7	135
16	Mutational Analysis of Saccharomyces cerevisiae Erf2 Reveals a Two-step Reaction Mechanism for Protein Palmitoylation by DHHC Enzymes*. Journal of Biological Chemistry, 2010, 285, 38104-38114.	3.4	132
17	A gene encoding rat cholecystokinin. Isolation, nucleotide sequence, and promoter activity. Journal of Biological Chemistry, 1985, 260, 1280-6.	3.4	98
18	The Eukaryotic Two-Component Histidine Kinase Sln1p RegulatesOCH1via the Transcription Factor, Skn7p. Molecular Biology of the Cell, 2002, 13, 412-424.	2.1	93

ROBERT J DESCHENES

#	Article	IF	CITATIONS
19	Model organisms lead the way to protein palmitoyltransferases. Journal of Cell Science, 2004, 117, 521-526.	2.0	90
20	Saccharomyces cerevisiae Histidine Phosphotransferase Ypd1p Shuttles between the Nucleus and Cytoplasm for SLN1 -Dependent Phosphorylation of Ssk1p and Skn7p. Eukaryotic Cell, 2003, 2, 1304-1314.	3.4	78
21	Palmitoylation and Plasma Membrane Localization of Ras2p by a Nonclassical Trafficking Pathway in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2003, 23, 6574-6584.	2.3	75
22	Intracellular Glycerol Levels Modulate the Activity of Sln1p, aSaccharomyces cerevisiae Two-component Regulator. Journal of Biological Chemistry, 1999, 274, 360-367.	3.4	72
23	Erf4p and Erf2p Form an Endoplasmic Reticulum-associated Complex Involved in the Plasma Membrane Localization of Yeast Ras Proteins. Journal of Biological Chemistry, 2002, 277, 49352-49359.	3.4	70
24	Evidence for an S-farnesylcysteine methyl ester at the carboxyl terminus of the Saccharomyces cerevisiae RAS2 protein. Biochemistry, 1990, 29, 9651-9659.	2.5	68
25	Akr1p-dependent Palmitoylation of Yck2p Yeast Casein Kinase 1 Is Necessary and Sufficient for Plasma Membrane Targeting. Journal of Biological Chemistry, 2004, 279, 27138-27147.	3.4	59
26	Palmitoyl acyltransferase DHHC21 mediates endothelial dysfunction in systemic inflammatory response syndrome. Nature Communications, 2016, 7, 12823.	12.8	55
27	Sequence analysis of a cDNA coding for a pancreatic precursor to somatostatin Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 6694-6698.	7.1	52
28	Plasma Membrane Localization of Ras Requires Class C Vps Proteins and Functional Mitochondria in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2006, 26, 3243-3255.	2.3	52
29	Activated Alleles of Yeast SLN1 Increase Mcm1-dependent Reporter Gene Expression and Diminish Signaling through the Hog1 Osmosensing Pathway. Journal of Biological Chemistry, 1997, 272, 13365-13371.	3.4	49
30	A cytoplasmic coiled-coil domain is required for histidine kinase activity of the yeast osmosensor, SLN1. Molecular Microbiology, 2002, 43, 459-473.	2.5	48
31	Mutations in the X-linked Intellectual Disability Gene, zDHHC9, Alter Autopalmitoylation Activity by Distinct Mechanisms. Journal of Biological Chemistry, 2014, 289, 18582-18592.	3.4	46
32	The Erf4 Subunit of the Yeast Ras Palmitoyl Acyltransferase Is Required for Stability of the Acyl-Erf2 Intermediate and Palmitoyl Transfer to a Ras2 Substrate. Journal of Biological Chemistry, 2012, 287, 34337-34348.	3.4	41
33	The Essential Transcription Factor, Mcm1, Is a Downstream Target of Sln1, a Yeast "Two-component" Regulator. Journal of Biological Chemistry, 1995, 270, 8739-8743.	3.4	38
34	Acylation and prenylation of proteins. Current Opinion in Cell Biology, 1990, 2, 1108-1113.	5.4	37
35	Essential Functions of Protein Tyrosine Phosphatases Ptp2 and Ptp3 and Rim11 Tyrosine Phosphorylation in <i>Saccharomyces cerevisiae</i> Meiosis and Sporulation. Molecular Biology of the Cell, 2000, 11, 663-676.	2.1	33
36	Farnesylation and Proteolysis Are Sequential, But Distinct Steps in the CaaX Box Modification Pathway. Archives of Biochemistry and Biophysics, 1995, 318, 113-121.	3.0	31

3

ROBERT J DESCHENES

#	Article	IF	CITATIONS
37	A fluorescence-based assay to monitor autopalmitoylation of zDHHC proteins applicable to high-throughput screening. Analytical Biochemistry, 2014, 460, 1-8.	2.4	30
38	Antifungal Properties and Target Evaluation of Three Putative Bacterial Histidine Kinase Inhibitors. Antimicrobial Agents and Chemotherapy, 1999, 43, 1700-1703.	3.2	29
39	Modulation of Yeast Sln1 Kinase Activity by the Ccw12 Cell Wall Protein. Journal of Biological Chemistry, 2008, 283, 1962-1973.	3.4	28
40	Microfluidic device for trapping and monitoring three dimensional multicell spheroids using electrical impedance spectroscopy. Biomicrofluidics, 2013, 7, 34108.	2.4	27
41	Primary structural comparison of the preprohormones cholecystokinin and gastrin. FEBS Letters, 1985, 182, 135-138.	2.8	26
42	Role for the Ran Binding Protein, Mog1p, in Saccharomyces cerevisiae SLN1-SKN7 Signal Transduction. Eukaryotic Cell, 2004, 3, 1544-1556.	3.4	24
43	Identification of SARS-CoV-2 Spike Palmitoylation Inhibitors That Results in Release of Attenuated Virus with Reduced Infectivity. Viruses, 2022, 14, 531.	3.3	22
44	Analysis of the diffusion of Ras2 in <i>Saccharomyces cerevisiae</i> using fluorescence recovery after photobleaching. Physical Biology, 2010, 7, 026011.	1.8	20
45	Identification of Protein Palmitoylation Inhibitors from a Scaffold Ranking Library. Combinatorial Chemistry and High Throughput Screening, 2016, 19, 262-274.	1.1	19
46	Expression of the Cholecystokinin Gene in Rat Brain during Development. Developmental Neuroscience, 1987, 9, 61-67.	2.0	17
47	Physicochemical sequence characteristics that influence <i>S</i> -palmitoylation propensity. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2337-2350.	3.5	15
48	Purification and characterization of recombinant protein acyltransferases. Methods, 2006, 40, 143-150.	3.8	13
49	Local anesthetics noncompetitively inhibit terbium binding to the exterior surface of nerve membrane vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1981, 649, 515-520.	2.6	10
50	Terbium binding to axonal membrane vesicles from lobster (Homarus Americanus) peripheral nerve. A probe of calcium binding sites. Biochimica Et Biophysica Acta - Biomembranes, 1981, 641, 166-172.	2.6	9
51	[7] Characterization of protein prenylation in Saccharomyces cerevisiae. Methods in Enzymology, 1995, 250, 68-78.	1.0	8
52	Altered Phosphotransfer in an Activated Mutant of the Saccharomyces cerevisiae Two-Component Osmosensor Sln1p. Eukaryotic Cell, 2002, 1, 174-180.	3.4	7
53	A reevaluation of calcium-local anesthetic antagonism. Experimental Neurology, 1982, 76, 547-552.	4.1	6
54	Functional Consequence of Mutating Conserved Residues of the Yeast Farnesyl-Protein Transferase β-Subunit Ram1(Dpr1)â€. Biochemistry, 1997, 36, 15932-15939.	2.5	4

ROBERT J DESCHENES

#	Article	IF	CITATIONS
55	An amino terminal prosequence is required for efficient synthesis of S. cerevisiae a-factor. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1356, 23-34.	4.1	3
56	Modulation of Cholecystokinin Gene Expressiona. Annals of the New York Academy of Sciences, 1985, 448, 53-60.	3.8	2
57	In Vitro Assays to Monitor the Enzymatic Activities of zDHHC Protein Acyltransferases. Methods in Molecular Biology, 2019, 2009, 169-177.	0.9	2
58	Expression of MFA1 and STE6 is sufficient for mating type-independent secretion of yeast a-factor, but not mating competence. Current Genetics, 1999, 35, 1-7.	1.7	0
59	Diffusion and Exchange of Non-Integral Membrane Associated Fluorophores During Fluorescence Recovery After Photobleaching with the Confocal Laser Scanning Microscope: ROI Size Analysis of EGFP:Ras2 Plasma Membrane Diffusion in Saccharomyces cerevisiae. Biophysical Journal, 2009, 96, 32a-33a.	0.5	0
60	Protein Modifications Protein Palmitoylation. , 2021, , 182-185.		0
61	Palmitoylation of SARSâ€CoV 2 Spike glycoprotein is important for viral infectivity and pathogenicity. FASEB Journal, 2021, 35, .	0.5	0
62	Protein Palmitoylation. , 2004, , 532-535.		0
63	Construction of a physical model of a farnesyltransferaseâ€inhibitor complex: Insight into a novel therapy for Hutchinsonâ€Guilford Progeria. FASEB Journal, 2008, 22, 342-342.	0.5	0
64	Identifying Autopalmitoylation Inhibitors Through Scaffold Ranking. FASEB Journal, 2015, 29, 570.12.	0.5	0
65	Mutations in the zDHHC9 protein palmitoyltransferase result in X‣inked Intellectual Disability (XLID) by distinct mechanisms. FASEB Journal, 2019, 33, 632.10.	0.5	Ο